In this notebook we classify all integer alternating surgeries on the SnapPy census knots.
For that we start with the list GOERITZ of all knots in the SnapPy Census together with their possible alternating slopes (measured w.r.t. the Seifert framing) and their Goeritz matrices (in fact it will turn out that we do not need the Goeritz matrices it is enough to know the possible integer alternating slopes).
GOERITZ=[['m016', [3, 2, 2], [[18, [[2, 0, -1], [0, 4, -3], [-1, -3, 5]]], [19, [[2, 0, -1, 0], [0, 2, 0, -1], [-1, 0, 4, -2], [0, -1, -2, 3]]]]], ['m071', [5, 2], [[31, [[2, -1, 0], [-1, 6, -1], [0, -1, 3]]], [32, [[2, -1, 0, -1], [-1, 2, -1, 0], [0, -1, 6, -1], [-1, 0, -1, 3]]]]], ['m082', [3, 3, 2, 2], [[27, [[2, 0, -1, 0], [0, 2, 0, -1], [-1, 0, 5, -3], [0, -1, -3, 4]]], [28, [[2, 0, 0, 0, -1], [0, 2, 0, -1, 0], [0, 0, 2, 0, -1], [0, -1, 0, 3, -2], [-1, 0, -1, -2, 4]]]]], ['m103', [5, 3, 2, 2], [[43, [[2, -1, 0, -1], [-1, 3, 0, 0], [0, 0, 4, -1], [-1, 0, -1, 3]]], [44, [[2, 0, 0, -1, -1], [0, 2, -1, 0, -1], [0, -1, 3, 0, 0], [-1, 0, 0, 4, -1], [-1, -1, 0, -1, 3]]]]], ['m118', [4, 3, 2], [[30, [[4, -2, -1], [-2, 6, -2], [-1, -2, 3]]], [31, [[2, -1, 0, 0], [-1, 4, -2, -1], [0, -2, 3, -1], [0, -1, -1, 4]]]]], ['m144', [3, 3, 3, 2, 2], [[36, [[2, 0, 0, -1, 0], [0, 2, -1, 0, 0], [0, -1, 2, 0, -1], [-1, 0, 0, 5, -3], [0, 0, -1, -3, 4]]], [37, [[2, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 3, -2], [-1, 0, 0, -1, -2, 4]]]]], ['m194', [5, 3], [[36, [[2, -1, -1], [-1, 6, -3], [-1, -3, 6]]], [37, [[2, -1, -1, 0], [-1, 2, 0, 0], [-1, 0, 6, -3], [0, 0, -3, 4]]]]], ['m198', [5, 2, 2, 2], [[38, [[2, -1, 0, -1], [-1, 2, 0, 0], [0, 0, 5, -3], [-1, 0, -3, 5]]], [39, [[2, 0, 0, -1, 0], [0, 2, -1, 0, -1], [0, -1, 2, 0, 0], [-1, 0, 0, 5, -2], [0, -1, 0, -2, 3]]]]], ['m239', [4, 3, 2, 2], [[34, [[2, -1, 0, -1], [-1, 4, -1, -1], [0, -1, 4, -1], [-1, -1, -1, 3]]], [35, [[2, 0, -1, 0, 0], [0, 2, 0, -1, 0], [-1, 0, 3, -1, -1], [0, -1, -1, 3, -1], [0, 0, -1, -1, 3]]]]], ['m240', [4, 3, 3], [[36, [[2, 0, 0, -1], [0, 2, 0, -1], [0, 0, 5, -4], [-1, -1, -4, 6]]], [37, [[2, -1, 0, 0, 0], [-1, 2, 0, -1, 0], [0, 0, 2, 0, -1], [0, -1, 0, 5, -3], [0, 0, -1, -3, 4]]]]], ['m270', [5, 3, 3], [[45, [[2, 0, -1, -1], [0, 2, 0, -1], [-1, 0, 4, -2], [-1, -1, -2, 6]]], [46, [[2, -1, 0, -1, 0], [-1, 2, 0, 0, 0], [0, 0, 2, 0, -1], [-1, 0, 0, 4, -2], [0, 0, -1, -2, 4]]]]], ['m276', [5, 4, 2, 2], [[50, [[2, -1, 0, -1], [-1, 4, 0, -2], [0, 0, 3, -2], [-1, -2, -2, 6]]], [51, [[2, 0, -1, 0, 0], [0, 2, -1, 0, -1], [-1, -1, 4, 0, -1], [0, 0, 0, 3, -2], [0, -1, -1, -2, 4]]]]], ['m281', [4, 4, 3, 2], [[46, [[2, 0, 0, -1], [0, 3, -1, 0], [0, -1, 5, -2], [-1, 0, -2, 3]]], [47, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 3, 0, 0], [0, 0, 0, 3, -2], [-1, -1, 0, -2, 4]]]]], ['o9_00133', [5, 5, 5, 5, 5, 2], [[131, [[2, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, 0, 0, 0, 0, 3, -1], [-1, 0, 0, 0, -1, -1, 6]]], [132, [[2, -1, 0, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 0, 0, 3, -1], [-1, 0, 0, 0, 0, -1, -1, 6]]]]], ['o9_00168', [5, 5, 5, 5, 5, 3, 2, 2], [[143, [[2, 0, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 0, 3, -1, 0], [0, 0, 0, 0, 0, -1, 4, 0], [-1, 0, 0, 0, -1, 0, 0, 3]]], [144, [[2, 0, 0, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 0, 0, 3, 0, 0], [0, -1, 0, 0, 0, 0, 0, 3, -2], [0, 0, 0, 0, 0, -1, 0, -2, 4]]]]], ['o9_00644', [3, 3, 3, 3, 3, 3, 3, 2, 2], [[72, [[2, 0, 0, 0, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, 0, -1, 2, 0, -1], [-1, 0, 0, 0, 0, 0, 0, 5, -3], [0, 0, 0, 0, 0, 0, -1, -3, 4]]], [73, [[2, 0, 0, 0, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0, 0], [0, 0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, 0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 0, 0, 0, 0, 3, -2], [-1, 0, 0, 0, 0, 0, 0, -1, -2, 4]]]]], ['o9_00797', [7, 7, 7, 7, 3, 2, 2], [[214, [[2, 0, 0, 0, -1, -1, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 3, -1, -1], [-1, 0, 0, 0, -1, 5, -2], [0, 0, 0, -1, -1, -2, 6]]], [215, [[2, 0, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 0, 3, 0, -1], [0, -1, 0, 0, 0, 0, 3, -1], [-1, 0, 0, 0, -1, -1, -1, 6]]]]], ['o9_00815', [7, 7, 7, 7, 4, 3, 2], [[226, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 5, -2, -1, -1], [0, 0, 0, -2, 5, -2, 0], [0, 0, 0, -1, -2, 3, 0], [0, 0, -1, -1, 0, 0, 3]]], [227, [[2, 0, 0, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 0, 4, -1, -1, -1], [0, 0, 0, 0, -1, 3, -2, 0], [-1, 0, 0, 0, -1, -2, 4, 0], [0, 0, 0, -1, -1, 0, 0, 3]]]]], ['o9_01436', [7, 7, 7, 2, 2], [[157, [[2, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, -1], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 3, 0], [-1, -1, 0, -1, 0, 7]]], [158, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, -1, 0], [0, 0, 2, 0, 0, -1, -1], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, -1, -1, 0, 0, 3, 0], [-1, 0, -1, 0, -1, 0, 7]]]]], ['o9_01496', [7, 7, 7, 5, 2, 2, 2], [[185, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 4, -2, 0], [0, 0, 0, 0, -2, 5, 0], [-1, 0, 0, -1, 0, 0, 3]]], [186, [[2, 0, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0, -1, 0], [0, -1, 2, 0, 0, -1, 0, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, -1, 0, 0, 4, 0, 0], [0, -1, 0, 0, 0, 0, 3, -2], [0, 0, 0, 0, -1, 0, -2, 4]]]]], ['o9_01584', [8, 8, 8, 3, 3, 2, 2], [[219, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 3, 0, 0], [0, -1, 0, 0, 0, 4, 0], [-1, 0, 0, -1, 0, 0, 4]]], [220, [[2, 0, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1, 0, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, -1, -1, 0, 0, 3, 0, 0], [0, -1, 0, 0, 0, 0, 3, -2], [0, 0, 0, 0, -1, 0, -2, 5]]]]], ['o9_01621', [8, 8, 8, 5, 3], [[228, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 4, -2, -2], [-1, 0, 0, -2, 6, -2], [-1, 0, -1, -2, -2, 7]]], [229, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 4, -1, -2], [0, 0, 0, 0, -1, 4, -2], [-1, 0, 0, -1, -2, -2, 7]]]]], ['o9_01680', [8, 8, 8, 3, 2, 2], [[210, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 3, -1, 0], [0, 0, 0, -1, 4, -3], [-1, 0, -1, 0, -3, 8]]], [211, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 3, 0, -1], [0, -1, 0, 0, 0, 3, -2], [0, 0, 0, -1, -1, -2, 7]]]]], ['o9_01765', [8, 8, 8, 5, 3, 3], [[237, [[2, 0, 0, 0, 0, -1, 0], [0, 2, 0, 0, -1, 0, -1], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 4, -1, 0], [-1, 0, 0, 0, -1, 4, 0], [0, -1, 0, -1, 0, 0, 3]]], [238, [[2, -1, 0, 0, 0, 0, -1, 0], [-1, 2, 0, 0, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1, 0, -1], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [0, -1, -1, 0, 0, 4, -1, 0], [-1, 0, 0, 0, 0, -1, 4, 0], [0, 0, -1, 0, -1, 0, 0, 3]]]]], ['o9_01953', [5, 5, 5, 5, 5, 3], [[136, [[2, 0, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [-1, 0, 0, 0, 0, 6, -3], [-1, 0, 0, 0, -1, -3, 6]]], [137, [[2, -1, 0, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, 0, 0, 0, 0, 0, 4, -3], [0, -1, 0, 0, 0, -1, -3, 6]]]]], ['o9_01955', [5, 5, 5, 5, 5, 2, 2, 2], [[138, [[2, -1, 0, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 0, 0, 5, -3], [0, 0, 0, 0, 0, -1, -3, 5]]], [139, [[2, 0, 0, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 0, 0, 3, -2], [-1, 0, 0, 0, 0, 0, -1, -2, 5]]]]], ['o9_02255', [10, 10, 3, 3, 2, 2], [[227, [[2, 0, 0, -1, -1, 0], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, -1, 0], [-1, 0, 0, -1, 5, -2], [0, -1, -1, 0, -2, 7]]], [228, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 2, 0, 0, -1], [-1, -1, -1, 0, 3, 0, 0], [0, -1, 0, 0, 0, 3, -1], [-1, 0, -1, -1, 0, -1, 7]]]]], ['o9_02340', [10, 10, 4, 3, 3], [[236, [[2, 0, 0, -1, -1, 0], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, -1], [-1, -1, 0, 0, 6, -3], [0, 0, -1, -1, -3, 7]]], [237, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, -1, -1, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, -1, 0, 3, 0, -1], [0, 0, -1, 0, 0, 4, -2], [0, -1, 0, -1, -1, -2, 7]]]]], ['o9_02350', [10, 10, 7, 3, 3, 2], [[272, [[2, 0, -1, 0, 0, -1], [0, 2, 0, 0, 0, -1], [-1, 0, 6, -2, -2, 0], [0, 0, -2, 5, -2, 0], [0, 0, -2, -2, 4, 0], [-1, -1, 0, 0, 0, 3]]], [273, [[2, 0, 0, 0, 0, -1, 0], [0, 2, 0, -1, 0, 0, -1], [0, 0, 2, 0, 0, 0, -1], [0, -1, 0, 5, -1, -2, 0], [0, 0, 0, -1, 3, -2, 0], [-1, 0, 0, -2, -2, 5, 0], [0, -1, -1, 0, 0, 0, 3]]]]], ['o9_02386', [10, 10, 6, 4, 3], [[263, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1], [0, 0, 5, -2, -1, -1], [-1, 0, -2, 6, -3, 0], [0, 0, -1, -3, 4, 0], [0, -1, -1, 0, 0, 3]]], [264, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, 0, -1], [0, 0, 0, 5, -2, -1, -1], [0, 0, 0, -2, 4, -2, 0], [-1, 0, 0, -1, -2, 4, 0], [0, 0, -1, -1, 0, 0, 3]]]]], ['o9_02655', [9, 9, 4, 3, 2, 2], [[196, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1], [0, 0, 3, -1, -1, 0], [-1, 0, -1, 5, -2, 0], [0, 0, -1, -2, 3, 0], [-1, -1, 0, 0, 0, 4]]], [197, [[2, 0, 0, 0, 0, -1, 0], [0, 2, 0, 0, -1, 0, -1], [0, 0, 2, 0, 0, 0, -1], [0, 0, 0, 3, -1, -1, 0], [0, -1, 0, -1, 3, -1, 0], [-1, 0, 0, -1, -1, 3, 0], [0, -1, -1, 0, 0, 0, 4]]]]], ['o9_02696', [9, 9, 5, 4, 2], [[208, [[2, 0, 0, 0, -1], [0, 3, -1, -1, 0], [0, -1, 5, -1, -1], [0, -1, -1, 4, 0], [-1, 0, -1, 0, 3]]], [209, [[2, 0, -1, 0, -1, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 6, -1, -1, -1], [0, 0, -1, 3, -1, 0], [-1, 0, -1, -1, 3, 0], [0, -1, -1, 0, 0, 3]]]]], ['o9_02706', [9, 9, 9, 4, 3, 2], [[273, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 5, -2, -1, -1], [0, 0, -2, 3, 0, -1], [0, 0, -1, 0, 3, -2], [0, -1, -1, -1, -2, 7]]], [274, [[2, 0, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 4, -1, -2, -1], [0, 0, 0, -1, 3, 0, -1], [-1, 0, 0, -2, 0, 3, 0], [-1, 0, -1, -1, -1, 0, 6]]]]], ['o9_02735', [9, 9, 9, 5, 4, 2, 2], [[293, [[2, 0, 0, 0, -1, -1, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 4, -1, -1, -1], [-1, 0, 0, -1, 5, -2, 0], [-1, 0, 0, -1, -2, 4, 0], [0, 0, -1, -1, 0, 0, 3]]], [294, [[2, 0, 0, 0, -1, 0, -1, 0], [0, 2, 0, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, 0, 0, 0, -1], [-1, 0, 0, 0, 4, 0, -1, -1], [0, -1, 0, 0, 0, 3, -1, 0], [-1, 0, 0, 0, -1, -1, 3, 0], [0, 0, 0, -1, -1, 0, 0, 3]]]]], ['o9_02772', [9, 2, 2, 2], [[95, [[2, 0, 0, -1, 0], [0, 2, -1, 0, -1], [0, -1, 2, -1, 0], [-1, 0, -1, 8, 0], [0, -1, 0, 0, 3]]], [96, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, -1], [0, 0, -1, 2, -1, 0], [0, -1, 0, -1, 8, 0], [-1, 0, -1, 0, 0, 3]]]]], ['o9_02786', [4, 4, 4, 4, 4, 3, 2, 2], [[98, [[2, 0, 0, 0, 0, -1, -1, 0], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 0, 3, -1, 0], [-1, 0, 0, 0, 0, -1, 5, -2], [0, 0, 0, 0, -1, 0, -2, 3]]], [99, [[2, 0, 0, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 0, 0, 3, 0, 0], [0, -1, 0, 0, 0, 0, 0, 3, -1], [-1, 0, 0, 0, 0, -1, 0, -1, 3]]]]], ['o9_02794', [4, 4, 4, 4, 4, 4, 3, 2], [[110, [[2, -1, 0, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [0, 0, 0, 0, 0, 3, -1, 0], [0, 0, 0, 0, 0, -1, 5, -2], [0, 0, 0, 0, -1, 0, -2, 3]]], [111, [[2, 0, 0, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 0, 0, 3, -2], [-1, 0, 0, 0, 0, -1, 0, -2, 4]]]]], ['o9_03032', [9, 7, 2, 2, 2, 2], [[147, [[2, -1, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 3, 0, 0], [0, 0, 0, 0, 6, -3], [-1, 0, 0, 0, -3, 5]]], [148, [[2, 0, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0, -1], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 3, 0, 0], [-1, 0, 0, 0, 0, 6, -3], [-1, -1, 0, 0, 0, -3, 5]]]]], ['o9_03108', [9, 2, 2, 2, 2, 2], [[102, [[2, -1, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 2, 0, 0], [0, 0, 0, 0, 7, -3], [-1, 0, 0, 0, -3, 5]]], [103, [[2, 0, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0, -1], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, 0], [-1, 0, 0, 0, 0, 7, -2], [0, -1, 0, 0, 0, -2, 3]]]]], ['o9_03118', [11, 11, 5, 4, 2, 2], [[292, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1], [0, 0, 4, -1, -2, -1], [-1, 0, -1, 5, -1, -2], [0, 0, -2, -1, 3, 0], [0, -1, -1, -2, 0, 6]]], [293, [[2, 0, 0, -1, 0, -1, 0], [0, 2, 0, 0, -1, 0, -1], [0, 0, 2, 0, 0, 0, -1], [-1, 0, 0, 4, 0, -1, 0], [0, -1, 0, 0, 3, -1, 0], [-1, 0, 0, -1, -1, 3, 0], [0, -1, -1, 0, 0, 0, 4]]]]], ['o9_03133', [11, 3, 3, 3, 2, 2], [[157, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, 0, -1, 0], [-1, 0, 0, 5, 0, 0], [0, 0, -1, 0, 4, 0], [-1, -1, 0, 0, 0, 3]]], [158, [[2, 0, 0, 0, 0, -1, -1], [0, 2, 0, 0, -1, 0, -1], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 2, 0, -1, 0], [0, -1, 0, 0, 5, 0, 0], [-1, 0, 0, -1, 0, 4, 0], [-1, -1, -1, 0, 0, 0, 3]]]]], ['o9_03149', [11, 11, 6, 5, 2, 2], [[312, [[2, 0, -1, -1, 0, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 6, -1, -1, -1], [-1, 0, -1, 5, -2, 0], [0, 0, -1, -2, 3, 0], [0, -1, -1, 0, 0, 3]]], [313, [[2, 0, 0, 0, 0, -1, 0], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, 0, 0, 0, -1], [0, 0, 0, 5, -1, -1, -1], [0, -1, 0, -1, 3, -1, 0], [-1, -1, 0, -1, -1, 4, 0], [0, 0, -1, -1, 0, 0, 3]]]]], ['o9_03162', [11, 11, 4, 4, 3, 2], [[288, [[2, 0, -1, 0, -1, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 5, -2, 0, -1], [0, 0, -2, 5, -2, 0], [-1, 0, 0, -2, 3, 0], [0, -1, -1, 0, 0, 4]]], [289, [[2, 0, 0, 0, 0, -1, 0], [0, 2, 0, -1, 0, -1, 0], [0, 0, 2, 0, 0, 0, -1], [0, -1, 0, 4, -1, 0, -1], [0, 0, 0, -1, 3, -2, 0], [-1, -1, 0, 0, -2, 4, 0], [0, 0, -1, -1, 0, 0, 4]]]]], ['o9_03188', [11, 11, 7, 4, 2, 2], [[316, [[2, 0, -1, 0, 0, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 4, 0, -2, 0], [0, 0, 0, 3, -1, -1], [0, 0, -2, -1, 5, 0], [0, -1, 0, -1, 0, 3]]], [317, [[2, 0, 0, -1, 0, -1, 0], [0, 2, 0, -1, 0, 0, 0], [0, 0, 2, 0, 0, 0, -1], [-1, -1, 0, 4, 0, -2, 0], [0, 0, 0, 0, 3, -1, -1], [-1, 0, 0, -2, -1, 5, 0], [0, 0, -1, 0, -1, 0, 3]]]]], ['o9_03288', [11, 4, 3, 3], [[157, [[2, 0, 0, -1, 0], [0, 2, -1, -1, 0], [0, -1, 6, 0, -1], [-1, -1, 0, 6, -4], [0, 0, -1, -4, 5]]], [158, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, -1, -1, 0], [0, 0, -1, 6, 0, -1], [0, 0, -1, 0, 4, -3], [0, -1, 0, -1, -3, 5]]]]], ['o9_03313', [11, 8, 3, 3], [[205, [[2, 0, -1, -1, 0], [0, 2, 0, -1, 0], [-1, 0, 8, -2, -3], [-1, -1, -2, 6, -2], [0, 0, -3, -2, 5]]], [206, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, -1, 0], [0, -1, 0, 8, -2, -3], [0, 0, -1, -2, 4, -1], [-1, 0, 0, -3, -1, 5]]]]], ['o9_03412', [11, 7, 4, 4], [[205, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, -1], [0, 0, -1, 3, 0, 0], [0, -1, 0, 0, 4, -1], [0, 0, -1, 0, -1, 5]]], [206, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, -1], [0, 0, 0, -1, 3, 0, 0], [0, 0, -1, 0, 0, 4, -1], [-1, 0, 0, -1, 0, -1, 5]]]]], ['o9_03526', [6, 5, 5], [[90, [[2, -1, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 2, 0, -1], [0, 0, 0, 0, 7, -6], [0, 0, -1, -1, -6, 8]]], [91, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, -1, 0], [0, 0, 0, 0, 2, 0, -1], [0, 0, 0, -1, 0, 7, -5], [0, 0, 0, 0, -1, -5, 6]]]]], ['o9_03586', [7, 7, 7, 2, 2, 2, 2], [[164, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 5, -3], [0, 0, 0, 0, -1, -3, 6]]], [165, [[2, 0, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 0, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, 0, 0, -1, 0, 0, 3, -2], [-1, 0, 0, 0, 0, -1, -2, 6]]]]], ['o9_03622', [7, 7, 7, 5, 2], [[178, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 7, -2, -4], [0, 0, 0, -2, 3, 0], [-1, 0, -1, -4, 0, 7]]], [179, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, 0, 0, 0, 5, -1, -4], [-1, 0, 0, 0, -1, 3, 0], [0, -1, 0, -1, -4, 0, 7]]]]], ['o9_03802', [11, 3, 3, 3], [[150, [[2, 0, 0, -1, -1], [0, 2, -1, 0, -1], [0, -1, 2, -1, 0], [-1, 0, -1, 8, -2], [-1, -1, 0, -2, 6]]], [151, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 2, -1, 0, -1], [0, 0, -1, 2, -1, 0], [-1, 0, 0, -1, 8, -2], [0, 0, -1, 0, -2, 4]]]]], ['o9_03833', [9, 7, 2, 2], [[140, [[2, 0, -1, 0, -1], [0, 2, 0, -1, 0], [-1, 0, 8, 0, -5], [0, -1, 0, 3, -2], [-1, 0, -5, -2, 8]]], [141, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, -1, 0], [0, 0, 2, 0, -1, 0], [-1, 0, 0, 8, 0, -5], [0, -1, -1, 0, 3, -1], [0, 0, 0, -5, -1, 6]]]]], ['o9_03932', [9, 5, 5], [[135, [[2, -1, 0, 0, -1, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 2, 0, -1], [-1, 0, 0, 0, 4, -2], [0, 0, -1, -1, -2, 8]]], [136, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, 0], [0, 0, 0, 0, 2, 0, -1], [-1, 0, 0, 0, 0, 4, -2], [0, 0, 0, 0, -1, -2, 6]]]]], ['o9_04106', [12, 5, 5, 2, 2, 2], [[207, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, -1, -1], [0, -1, 0, 4, 0, 0], [0, 0, -1, 0, 5, -1], [-1, 0, -1, 0, -1, 4]]], [208, [[2, 0, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0, -1], [0, -1, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, -1, -1], [0, 0, -1, 0, 4, 0, 0], [-1, 0, 0, -1, 0, 5, -1], [-1, -1, 0, -1, 0, -1, 4]]]]], ['o9_04205', [12, 7, 5, 2], [[224, [[2, -1, -1, 0, 0], [-1, 8, -3, 0, -2], [-1, -3, 7, -2, 0], [0, 0, -2, 3, -1], [0, -2, 0, -1, 3]]], [225, [[2, -1, 0, 0, -1, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 8, -3, 0, -2], [0, 0, -3, 5, -1, 0], [-1, 0, 0, -1, 3, -1], [0, 0, -2, 0, -1, 3]]]]], ['o9_04245', [13, 5, 5, 3], [[230, [[2, 0, -1, -1, 0], [0, 2, -1, 0, -1], [-1, -1, 8, -2, -1], [-1, 0, -2, 6, -2], [0, -1, -1, -2, 4]]], [231, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, -1, 0, -1], [0, -1, -1, 8, -2, -1], [0, 0, 0, -2, 4, -1], [-1, 0, -1, -1, -1, 4]]]]], ['o9_04269', [5, 5, 5, 5, 4, 2], [[121, [[2, -1, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 6, -3, -2], [0, 0, 0, -3, 5, -1], [0, 0, -1, -2, -1, 4]]], [122, [[2, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, 0, 0, 0, 4, -1, 0], [0, 0, 0, 0, -1, 3, -1], [-1, 0, 0, -1, 0, -1, 3]]]]], ['o9_04313', [13, 6, 5, 2, 2], [[239, [[2, 0, -1, 0, 0], [0, 8, -1, -3, -1], [-1, -1, 5, -1, -2], [0, -3, -1, 4, 0], [0, -1, -2, 0, 3]]], [240, [[2, 0, 0, 0, -1, -1], [0, 2, 0, -1, 0, 0], [0, 0, 8, -1, -3, -1], [0, -1, -1, 3, 0, -1], [-1, 0, -3, 0, 4, 0], [-1, 0, -1, -1, 0, 3]]]]], ['o9_04431', [13, 7, 6, 2, 2, 2], [[267, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 3, 0, -1, 0], [0, 0, 0, 3, -1, -1], [-1, 0, -1, -1, 7, -2], [0, -1, 0, -1, -2, 4]]], [268, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, -1, 0], [0, -1, 2, 0, 0, 0, 0], [0, 0, 0, 3, 0, 0, -1], [-1, 0, 0, 0, 3, -1, -1], [0, -1, 0, 0, -1, 3, 0], [-1, 0, 0, -1, -1, 0, 5]]]]], ['o9_04435', [9, 8, 2, 2, 2, 2], [[162, [[2, -1, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 4, 0, -2], [0, 0, 0, 0, 5, -4], [-1, 0, 0, -2, -4, 8]]], [163, [[2, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0, -1], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [-1, 0, 0, -1, 4, 0, -1], [0, 0, 0, 0, 0, 5, -4], [0, -1, 0, 0, -1, -4, 6]]]]], ['o9_04438', [13, 8, 5, 3, 2, 2], [[276, [[2, 0, -1, 0, 0, 0], [0, 3, 0, 0, -1, 0], [-1, 0, 4, 0, -1, -2], [0, 0, 0, 4, -1, -3], [0, -1, -1, -1, 4, 0], [0, 0, -2, -3, 0, 5]]], [277, [[2, 0, 0, -1, 0, -1, 0], [0, 2, 0, -1, -1, 0, 0], [0, 0, 3, 0, 0, -1, 0], [-1, -1, 0, 4, 0, 0, -2], [0, -1, 0, 0, 3, 0, 0], [-1, 0, -1, 0, 0, 4, -1], [0, 0, 0, -2, 0, -1, 3]]]]], ['o9_05021', [8, 8, 8, 3, 3], [[212, [[2, 0, 0, 0, -1, -1], [0, 2, 0, 0, -1, -1], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [-1, -1, 0, 0, 6, -2], [-1, -1, 0, -1, -2, 7]]], [213, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1, -1], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 4, -2], [0, -1, -1, 0, -1, -2, 7]]]]], ['o9_05177', [8, 8, 8, 5, 3, 2, 2], [[235, [[2, 0, 0, 0, -1, -1, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 4, -1, -2, -1], [-1, 0, 0, -1, 5, 0, 0], [-1, 0, 0, -2, 0, 3, 0], [0, 0, -1, -1, 0, 0, 3]]], [236, [[2, 0, 0, 0, -1, 0, 0, 0], [0, 2, 0, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, 0, 0, 0, -1], [-1, 0, 0, 0, 4, 0, -2, -1], [0, -1, 0, 0, 0, 3, -2, 0], [0, 0, 0, 0, -2, -2, 4, 0], [0, 0, 0, -1, -1, 0, 0, 3]]]]], ['o9_05229', [12, 5, 5, 2], [[200, [[2, 0, -1, 0, -1], [0, 2, -1, 0, -1], [-1, -1, 8, 0, -3], [0, 0, 0, 3, -2], [-1, -1, -3, -2, 7]]], [201, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, -1], [-1, 0, -1, 8, 0, -3], [0, -1, 0, 0, 3, -1], [0, 0, -1, -3, -1, 5]]]]], ['o9_05357', [11, 8, 3, 3, 2, 2], [[212, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, -1, 0], [0, -1, 3, 0, 0, 0], [0, 0, 0, 7, -1, -3], [-1, -1, 0, -1, 3, 0], [-1, 0, 0, -3, 0, 4]]], [213, [[2, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 3, 0, 0, 0], [0, 0, 0, 0, 5, -2, -3], [0, -1, 0, 0, -2, 3, 0], [-1, 0, -1, 0, -3, 0, 5]]]]], ['o9_05426', [7, 7, 7, 7, 3, 3, 2], [[219, [[2, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 3, -1, 0], [0, 0, 0, 0, -1, 5, -2], [0, 0, 0, -1, 0, -2, 4]]], [220, [[2, 0, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 0, 3, -2], [-1, 0, 0, 0, -1, 0, -2, 5]]]]], ['o9_05483', [7, 7, 7, 7, 4, 2, 2], [[221, [[2, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 6, -2, -2], [0, 0, 0, 0, -2, 3, -1], [0, 0, 0, -1, -2, -1, 5]]], [222, [[2, 0, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 0, 4, -2, -1], [0, 0, 0, 0, 0, -2, 3, -1], [-1, 0, 0, 0, -1, -1, -1, 5]]]]], ['o9_05562', [13, 5, 5, 3, 2, 2], [[237, [[2, 0, 0, 0, -1, -1], [0, 2, 0, -1, 0, -1], [0, 0, 4, 0, -1, 0], [0, -1, 0, 6, -1, -1], [-1, 0, -1, -1, 3, 0], [-1, -1, 0, -1, 0, 3]]], [238, [[2, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 4, 0, 0, -1], [0, 0, -1, 0, 4, -2, -1], [0, -1, 0, 0, -2, 3, 0], [-1, 0, -1, -1, -1, 0, 4]]]]], ['o9_05618', [12, 7, 5, 2, 2, 2], [[231, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 3, 0, -1, 0], [0, 0, 0, 6, -1, -2], [-1, 0, -1, -1, 4, 0], [0, -1, 0, -2, 0, 3]]], [232, [[2, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, -1, 0], [0, -1, 2, 0, 0, 0, 0], [0, 0, 0, 3, 0, 0, -1], [0, 0, 0, 0, 4, -2, -2], [0, -1, 0, 0, -2, 3, 0], [-1, 0, 0, -1, -2, 0, 5]]]]], ['o9_05860', [10, 10, 3, 3, 3, 2], [[232, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 3, -1, 0], [0, 0, 0, -1, 5, -2], [0, 0, -1, 0, -2, 5]]], [233, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, -1, 0, 3, 0, 0], [0, 0, 0, 0, 0, 3, -2], [-1, 0, 0, -1, 0, -2, 6]]]]], ['o9_05970', [13, 8, 5, 3], [[269, [[2, -1, 0, -1, 0], [-1, 8, -1, -2, -2], [0, -1, 4, -2, 0], [-1, -2, -2, 6, -1], [0, -2, 0, -1, 3]]], [270, [[2, -1, -1, 0, 0, 0], [-1, 2, 0, -1, 0, 0], [-1, 0, 8, -1, -2, -2], [0, -1, -1, 4, -1, 0], [0, 0, -2, -1, 4, -1], [0, 0, -2, 0, -1, 3]]]]], ['o9_06060', [9, 9, 4, 4, 2], [[199, [[2, 0, -1, -1, 0], [0, 2, 0, 0, -1], [-1, 0, 6, -2, -2], [-1, 0, -2, 5, -1], [0, -1, -2, -1, 5]]], [200, [[2, 0, 0, 0, 0, -1], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, 0], [0, 0, 0, -1, 3, -1], [-1, 0, -1, 0, -1, 4]]]]], ['o9_06128', [10, 10, 7, 3, 2, 2], [[267, [[2, 0, -1, 0, 0, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 7, -2, -3, 0], [0, 0, -2, 4, -1, -1], [0, 0, -3, -1, 4, 0], [0, -1, 0, -1, 0, 3]]], [268, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, -1, 0, 0, 0], [0, 0, 2, 0, 0, 0, -1], [0, -1, 0, 5, -1, -3, 0], [-1, 0, 0, -1, 4, -1, -1], [0, 0, 0, -3, -1, 4, 0], [0, 0, -1, 0, -1, 0, 3]]]]], ['o9_06154', [9, 9, 5, 3, 2, 2], [[205, [[2, 0, 0, -1, -1, 0], [0, 2, 0, 0, 0, -1], [0, 0, 4, -1, -2, 0], [-1, 0, -1, 5, 0, -2], [-1, 0, -2, 0, 3, 0], [0, -1, 0, -2, 0, 4]]], [206, [[2, 0, 0, -1, 0, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, 0, 0, 0, -1], [-1, 0, 0, 4, 0, -2, 0], [0, -1, 0, 0, 3, 0, -1], [0, -1, 0, -2, 0, 3, 0], [-1, 0, -1, 0, -1, 0, 4]]]]], ['o9_06248', [11, 11, 4, 4, 2, 2], [[283, [[2, 0, 0, -1, 0, 0], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 6, -1, -2], [0, -1, 0, -1, 3, -1], [0, 0, -1, -2, -1, 6]]], [284, [[2, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, -1, -1, 0], [0, 0, 0, 2, 0, 0, -1], [0, -1, -1, 0, 4, -1, -1], [0, 0, -1, 0, -1, 3, -1], [-1, 0, 0, -1, -1, -1, 6]]]]], ['o9_06301', [11, 11, 7, 4, 3, 2], [[321, [[2, 0, 0, 0, 0, -1], [0, 6, -2, -1, -2, -1], [0, -2, 5, -1, 0, 0], [0, -1, -1, 3, -1, 0], [0, -2, 0, -1, 3, 0], [-1, -1, 0, 0, 0, 3]]], [322, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, 0, -1], [0, 0, 5, -1, -1, -2, -1], [0, 0, -1, 3, 0, 0, 0], [-1, 0, -1, 0, 3, -1, 0], [0, 0, -2, 0, -1, 3, 0], [0, -1, -1, 0, 0, 0, 3]]]]], ['o9_07790', [11, 3, 3, 2, 2], [[148, [[2, 0, -1, -1, 0], [0, 2, -1, 0, -1], [-1, -1, 7, 0, 0], [-1, 0, 0, 5, -3], [0, -1, 0, -3, 4]]], [149, [[2, 0, 0, 0, 0, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, -1, 0, -1], [0, -1, -1, 7, 0, 0], [0, -1, 0, 0, 3, -2], [-1, 0, -1, 0, -2, 4]]]]], ['o9_07893', [12, 5, 4, 3, 2], [[199, [[6, 0, -1, -1, -1], [0, 3, 0, -2, -1], [-1, 0, 3, -1, 0], [-1, -2, -1, 5, -1], [-1, -1, 0, -1, 3]]], [200, [[2, 0, -1, -1, 0, 0], [0, 6, 0, -1, -1, -1], [-1, 0, 3, 0, -1, -1], [-1, -1, 0, 3, 0, 0], [0, -1, -1, 0, 3, -1], [0, -1, -1, 0, -1, 3]]]]], ['o9_07943', [7, 7, 7, 3], [[159, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [0, 0, 0, 0, 4, -1], [-1, 0, 0, -1, -1, 6]]], [160, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 4, -1], [-1, 0, 0, 0, -1, -1, 6]]]]], ['o9_07945', [12, 7, 5, 3, 2], [[232, [[3, 0, 0, 0, -1], [0, 3, -1, -1, -1], [0, -1, 5, -1, -2], [0, -1, -1, 3, -1], [-1, -1, -2, -1, 6]]], [233, [[2, 0, 0, -1, 0, -1], [0, 3, 0, 0, -1, 0], [0, 0, 4, -1, -1, -1], [-1, 0, -1, 3, 0, -1], [0, -1, -1, 0, 4, -1], [-1, 0, -1, -1, -1, 4]]]]], ['o9_08006', [11, 8, 3, 3, 3], [[214, [[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [0, 0, -1, 3, 0, 0], [-1, 0, 0, 0, 5, -2], [0, -1, 0, 0, -2, 5]]], [215, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 3, 0, 0], [0, -1, 0, 0, 0, 5, -2], [-1, 0, -1, 0, 0, -2, 5]]]]], ['o9_08042', [7, 7, 7, 4, 3, 3], [[183, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, 0, -1], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 3, -1, 0], [0, 0, 0, 0, -1, 5, 0], [0, -1, 0, -1, 0, 0, 3]]], [184, [[2, -1, 0, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, -1, -1, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, -1, 0, 0, 3, 0, 0], [0, 0, -1, 0, 0, 0, 4, -3], [0, 0, 0, 0, -1, 0, -3, 5]]]]], ['o9_08224', [7, 7, 7, 3, 2], [[161, [[2, -1, 0, 0, 0], [-1, 2, 0, 0, -1], [0, 0, 3, -1, -1], [0, 0, -1, 5, -2], [0, -1, -1, -2, 6]]], [162, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 3, 0, -1], [0, 0, 0, 0, 3, -2], [-1, 0, -1, -1, -2, 7]]]]], ['o9_08302', [7, 7, 7, 4, 3, 2, 2], [[181, [[2, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 3, -1, -1, -1], [-1, 0, 0, -1, 5, -2, 0], [0, 0, 0, -1, -2, 3, 0], [0, 0, -1, -1, 0, 0, 3]]], [182, [[2, 0, 0, 0, 0, 0, -1, 0], [0, 2, 0, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 0, 3, -1, -1, -1], [0, -1, 0, 0, -1, 3, -1, 0], [-1, 0, 0, 0, -1, -1, 3, 0], [0, 0, 0, -1, -1, 0, 0, 3]]]]], ['o9_08477', [4, 4, 4, 4, 4, 3, 3], [[100, [[2, 0, 0, 0, 0, 0, -1, 0], [0, 2, 0, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [-1, -1, 0, 0, 0, 0, 6, -4], [0, 0, 0, 0, 0, -1, -4, 5]]], [101, [[2, -1, 0, 0, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 0, 0, 4, -3], [-1, 0, 0, 0, 0, 0, -1, -3, 5]]]]], ['o9_08647', [14, 5, 5, 4, 2, 2], [[271, [[2, 0, 0, 0, -1, -1], [0, 2, 0, -1, 0, -1], [0, 0, 4, 0, -1, 0], [0, -1, 0, 3, -1, 0], [-1, 0, -1, -1, 6, -2], [-1, -1, 0, 0, -2, 4]]], [272, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 4, 0, 0, -1], [-1, 0, -1, 0, 3, -1, 0], [0, -1, 0, 0, -1, 3, 0], [-1, 0, -1, -1, 0, 0, 4]]]]], ['o9_08765', [7, 7, 7, 4, 2], [[168, [[2, -1, 0, 0, 0], [-1, 2, 0, 0, -1], [0, 0, 5, -2, -2], [0, 0, -2, 5, -2], [0, -1, -2, -2, 6]]], [169, [[2, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 4, -1, -2], [0, 0, 0, -1, 3, -2], [-1, 0, -1, -2, -2, 7]]]]], ['o9_08771', [14, 9, 5, 3, 2], [[316, [[8, -1, -1, -2, -2], [-1, 3, -1, 0, 0], [-1, -1, 5, -1, -2], [-2, 0, -1, 3, 0], [-2, 0, -2, 0, 4]]], [317, [[2, 0, 0, 0, -1, -1], [0, 8, -1, -1, -2, -2], [0, -1, 3, -1, 0, 0], [0, -1, -1, 3, 0, -1], [-1, -2, 0, 0, 3, 0], [-1, -2, 0, -1, 0, 4]]]]], ['o9_08776', [14, 6, 5, 3, 2], [[271, [[7, -1, 0, -2, -1], [-1, 3, -1, 0, 0], [0, -1, 5, -1, -3], [-2, 0, -1, 3, 0], [-1, 0, -3, 0, 4]]], [272, [[2, 0, -1, 0, 0, -1], [0, 7, -1, 0, -2, -1], [-1, -1, 3, 0, 0, 0], [0, 0, 0, 3, -2, -1], [0, -2, 0, -2, 4, 0], [-1, -1, 0, -1, 0, 3]]]]], ['o9_08828', [13, 5, 5, 3, 3], [[239, [[2, 0, 0, 0, -1, 0], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, -1, -1], [0, -1, 0, 4, 0, 0], [-1, 0, -1, 0, 4, 0], [0, -1, -1, 0, 0, 4]]], [240, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, -1, 0], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 2, 0, -1, -1], [0, 0, -1, 0, 4, 0, 0], [0, -1, 0, -1, 0, 4, 0], [-1, 0, -1, -1, 0, 0, 4]]]]], ['o9_08831', [7, 7, 7, 3, 3, 2, 2], [[174, [[2, 0, 0, 0, -1, -1, 0], [0, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 3, -1, 0], [-1, 0, 0, 0, -1, 5, -2], [0, 0, 0, -1, 0, -2, 4]]], [175, [[2, 0, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1, 0, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, -1, -1, 0, 0, 3, 0, 0], [0, -1, 0, 0, 0, 0, 3, -1], [-1, 0, 0, 0, -1, 0, -1, 4]]]]], ['o9_08852', [14, 8, 6, 3, 3], [[316, [[2, 0, 0, 0, -1, -1], [0, 2, 0, 0, -1, -1], [0, 0, 3, 0, -1, 0], [0, 0, 0, 4, -2, -1], [-1, -1, -1, -2, 7, -1], [-1, -1, 0, -1, -1, 4]]], [317, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1, -1], [0, 0, 0, 3, 0, -1, 0], [0, -1, 0, 0, 4, -1, -1], [0, 0, -1, -1, -1, 5, -1], [-1, 0, -1, 0, -1, -1, 4]]]]], ['o9_08875', [13, 8, 5, 2, 2], [[267, [[2, -1, 0, -1, 0], [-1, 7, -2, 0, -2], [0, -2, 4, -1, 0], [-1, 0, -1, 5, -3], [0, -2, 0, -3, 5]]], [268, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, -1, 0], [0, -1, 7, -2, 0, -2], [-1, 0, -2, 4, 0, 0], [0, -1, 0, 0, 3, -2], [-1, 0, -2, 0, -2, 5]]]]], ['o9_09213', [5, 5, 5, 5, 5, 4, 2, 2], [[150, [[2, 0, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 0, 6, -2, -2], [0, 0, 0, 0, 0, -2, 3, 0], [-1, 0, 0, 0, -1, -2, 0, 4]]], [151, [[2, 0, 0, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 0, 0, 4, -1, 0], [0, -1, 0, 0, 0, 0, -1, 3, -1], [-1, 0, 0, 0, 0, -1, 0, -1, 3]]]]], ['o9_09465', [13, 4, 4, 3, 2], [[215, [[2, -1, 0, 0, -1], [-1, 8, -1, -2, 0], [0, -1, 5, -1, -2], [0, -2, -1, 3, 0], [-1, 0, -2, 0, 3]]], [216, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, -1], [0, -1, 8, -1, -2, 0], [0, 0, -1, 3, 0, -1], [-1, 0, -2, 0, 3, 0], [-1, -1, 0, -1, 0, 3]]]]], ['o9_09808', [13, 9, 4, 4, 2, 2], [[291, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, -1, 0], [0, -1, 3, 0, 0, 0], [0, 0, 0, 4, -1, -2], [-1, -1, 0, -1, 6, -2], [-1, 0, 0, -2, -2, 5]]], [292, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 3, 0, 0, 0], [-1, 0, 0, 0, 4, -1, -2], [0, -1, 0, 0, -1, 3, 0], [-1, 0, -1, 0, -2, 0, 5]]]]], ['o9_10696', [9, 4], [[101, [[2, -1, 0, 0, 0], [-1, 2, -1, 0, 0], [0, -1, 2, -1, 0], [0, 0, -1, 6, -1], [0, 0, 0, -1, 5]]], [102, [[2, -1, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 2, -1, 0], [0, 0, 0, -1, 6, -1], [-1, 0, 0, 0, -1, 5]]]]], ['o9_11248', [11, 4, 4, 4], [[172, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, -1, 0, -1], [0, 0, -1, 2, 0, 0], [-1, 0, 0, 0, 5, -2], [0, -1, -1, 0, -2, 7]]], [173, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, 0], [0, 0, 0, 2, -1, 0, -1], [0, 0, 0, -1, 2, 0, 0], [-1, 0, 0, 0, 0, 5, -2], [0, 0, 0, -1, 0, -2, 5]]]]], ['o9_11467', [11, 11, 5, 3, 3], [[287, [[2, 0, 0, 0, -1, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -2, -1], [-1, -1, 0, -2, 6, -1], [-1, 0, -1, -1, -1, 6]]], [288, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, -1, -1, 0], [0, 0, 0, 2, 0, 0, -1], [0, -1, -1, 0, 4, -1, -1], [0, 0, -1, 0, -1, 4, -1], [-1, 0, 0, -1, -1, -1, 6]]]]], ['o9_11560', [11, 11, 6, 5, 3, 2], [[317, [[2, 0, 0, 0, 0, -1], [0, 4, 0, -1, -1, -1], [0, 0, 6, -2, -3, 0], [0, -1, -2, 3, 0, 0], [0, -1, -3, 0, 4, 0], [-1, -1, 0, 0, 0, 3]]], [318, [[2, 0, -1, 0, -1, 0, 0], [0, 2, 0, 0, 0, 0, -1], [-1, 0, 4, 0, 0, -1, -1], [0, 0, 0, 3, 0, -1, 0], [-1, 0, 0, 0, 3, -2, 0], [0, 0, -1, -1, -2, 4, 0], [0, -1, -1, 0, 0, 0, 3]]]]], ['o9_11570', [11, 3, 3, 3, 3], [[159, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [0, 0, -1, 2, 0, 0], [-1, 0, 0, 0, 6, -2], [-1, -1, 0, 0, -2, 6]]], [160, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, 0], [-1, 0, 0, 0, 0, 6, -2], [0, 0, -1, 0, 0, -2, 4]]]]], ['o9_11685', [10, 3, 3, 3, 2, 2], [[136, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, 0, -1, 0], [-1, 0, 0, 6, -1, -1], [0, 0, -1, -1, 4, 0], [-1, -1, 0, -1, 0, 3]]], [137, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1, -1], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 2, 0, 0, 0], [-1, 0, 0, 0, 5, -1, 0], [0, -1, 0, 0, -1, 3, 0], [-1, -1, -1, 0, 0, 0, 3]]]]], ['o9_11795', [10, 3, 3, 2], [[123, [[2, -1, 0, -1], [-1, 7, -2, 0], [0, -2, 5, -1], [-1, 0, -1, 3]]], [124, [[2, 0, -1, 0, -1], [0, 2, -1, 0, -1], [-1, -1, 8, -2, 0], [0, 0, -2, 3, 0], [-1, -1, 0, 0, 3]]]]], ['o9_11845', [8, 7, 2, 2, 2, 2], [[130, [[2, -1, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 4, -1, -1], [0, 0, 0, -1, 6, -3], [-1, 0, 0, -1, -3, 5]]], [131, [[2, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, -1, 0], [-1, 0, 0, 0, 3, -1, -1], [0, 0, 0, -1, -1, 3, -1], [0, 0, 0, 0, -1, -1, 5]]]]], ['o9_11999', [13, 7, 5, 2, 2], [[252, [[2, 0, -1, 0, -1], [0, 6, -1, -1, -2], [-1, -1, 7, -3, 0], [0, -1, -3, 4, 0], [-1, -2, 0, 0, 3]]], [253, [[2, 0, -1, 0, -1, 0], [0, 2, 0, -1, 0, -1], [-1, 0, 6, -1, 0, -2], [0, -1, -1, 3, 0, 0], [-1, 0, 0, 0, 4, 0], [0, -1, -2, 0, 0, 3]]]]], ['o9_12144', [10, 9, 3, 3, 3], [[210, [[2, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [0, 0, -1, 5, 0, -3], [0, 0, 0, 0, 4, -3], [-1, -1, 0, -3, -3, 8]]], [211, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 2, -1, 0, 0], [0, -1, 0, -1, 5, 0, -2], [0, 0, 0, 0, 0, 4, -3], [0, 0, -1, 0, -2, -3, 6]]]]], ['o9_12230', [11, 9, 3, 3, 3], [[231, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [-1, 0, -1, 4, 0, -1], [0, 0, 0, 0, 4, -3], [-1, -1, 0, -1, -3, 8]]], [232, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 2, -1, 0, 0], [-1, 0, 0, -1, 4, 0, -1], [0, 0, 0, 0, 0, 4, -3], [0, 0, -1, 0, -1, -3, 6]]]]], ['o9_12412', [10, 7, 3, 2], [[163, [[7, 0, -2, -3], [0, 3, -1, -1], [-2, -1, 5, -2], [-3, -1, -2, 6]]], [164, [[2, -1, -1, 0, 0], [-1, 7, 0, -1, -3], [-1, 0, 3, 0, -1], [0, -1, 0, 3, -2], [0, -3, -1, -2, 6]]]]], ['o9_12459', [8, 7, 4, 4], [[148, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, -1], [0, 0, -1, 6, -1, -3], [0, -1, 0, -1, 4, -1], [0, 0, -1, -3, -1, 5]]], [149, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, -1, 0], [0, 0, -1, 0, 3, -1, -1], [0, 0, 0, -1, -1, 5, -1], [0, 0, 0, 0, -1, -1, 3]]]]], ['o9_12519', [5, 5, 5, 5, 4, 3, 2], [[130, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 5, -2, -1, -1], [0, 0, 0, -2, 3, 0, -1], [0, 0, 0, -1, 0, 3, 0], [0, 0, -1, -1, -1, 0, 3]]], [131, [[2, 0, 0, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 0, 4, -1, -2, 0], [0, 0, 0, 0, -1, 3, 0, -1], [-1, 0, 0, 0, -2, 0, 3, 0], [-1, 0, 0, -1, 0, -1, 0, 3]]]]], ['o9_12693', [5, 5, 5, 4, 4], [[110, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [-1, 0, -1, 0, 0, 7, -5], [0, 0, 0, 0, -1, -5, 6]]], [111, [[2, -1, 0, 0, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, 0, 0], [0, 0, 0, 2, 0, 0, -1, 0], [0, 0, 0, 0, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, 0, 0, -1, 0, 0, 5, -4], [-1, 0, 0, 0, 0, -1, -4, 6]]]]], ['o9_12736', [9, 8, 4, 4], [[180, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, -1, 0, -1], [0, 0, -1, 6, 0, -4], [0, 0, 0, 0, 3, -2], [0, -1, -1, -4, -2, 8]]], [181, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, -1, 0, 0], [0, 0, 0, 2, -1, 0, -1], [0, 0, -1, -1, 6, 0, -3], [0, 0, 0, 0, 0, 3, -2], [0, 0, 0, -1, -3, -2, 6]]]]], ['o9_12757', [5, 5, 5, 5, 5, 3, 3], [[145, [[2, 0, 0, 0, 0, 0, -1, -1], [0, 2, 0, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [-1, -1, 0, 0, 0, 0, 6, -2], [-1, 0, 0, 0, 0, -1, -2, 4]]], [146, [[2, -1, 0, 0, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, 0, 0, -1], [0, 0, 2, 0, 0, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 0, 0, 4, -2], [0, -1, 0, 0, 0, 0, -1, -2, 4]]]]], ['o9_12873', [14, 5, 5, 3, 2], [[260, [[2, -1, 0, 0, -1], [-1, 7, -1, -1, -1], [0, -1, 6, -2, -1], [0, -1, -2, 3, 0], [-1, -1, -1, 0, 3]]], [261, [[2, 0, -1, 0, -1, 0], [0, 2, -1, 0, 0, -1], [-1, -1, 7, -1, 0, -1], [0, 0, -1, 3, 0, -1], [-1, 0, 0, 0, 3, 0], [0, -1, -1, -1, 0, 3]]]]], ['o9_12892', [11, 4, 4, 3, 2, 2], [[171, [[2, 0, 0, 0, -1, 0], [0, 2, 0, -1, 0, -1], [0, 0, 4, 0, 0, -1], [0, -1, 0, 3, -2, 0], [-1, 0, 0, -2, 5, -1], [0, -1, -1, 0, -1, 3]]], [172, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 4, 0, 0, -1], [-1, 0, -1, 0, 3, -1, 0], [0, -1, 0, 0, -1, 3, -1], [0, 0, -1, -1, 0, -1, 3]]]]], ['o9_12919', [11, 5, 4, 2], [[167, [[6, -2, 0, -1], [-2, 6, -3, -1], [0, -3, 5, -1], [-1, -1, -1, 3]]], [168, [[2, -1, 0, 0, -1], [-1, 8, 0, -3, -1], [0, 0, 3, -1, -1], [0, -3, -1, 4, 0], [-1, -1, -1, 0, 3]]]]], ['o9_12971', [6, 6, 6, 5, 3, 3], [[153, [[2, 0, 0, 0, 0, -1, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 4, -2, 0], [-1, -1, 0, 0, -2, 6, -1], [-1, 0, 0, -1, 0, -1, 3]]], [154, [[2, -1, 0, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1, -1, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [0, -1, -1, 0, 0, 4, -1, 0], [0, 0, -1, 0, 0, -1, 4, -1], [-1, 0, 0, 0, -1, 0, -1, 3]]]]], ['o9_13052', [8, 8, 5, 4], [[172, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, -1, 0], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 3, 0, 0], [0, -1, 0, 0, 7, -4], [0, 0, -1, 0, -4, 5]]], [173, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 2, 0, 0, -1], [-1, 0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 5, -2], [0, 0, -1, -1, 0, -2, 4]]]]], ['o9_13056', [11, 8, 4, 4], [[220, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, -1, 0, -1], [-1, 0, -1, 4, 0, -1], [0, 0, 0, 0, 3, -2], [0, -1, -1, -1, -2, 8]]], [221, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, 0], [0, 0, 0, 2, -1, 0, -1], [-1, 0, 0, -1, 4, 0, -1], [0, 0, 0, 0, 0, 3, -2], [0, 0, 0, -1, -1, -2, 6]]]]], ['o9_13125', [10, 7, 4, 3], [[176, [[2, 0, -1, -1, 0], [0, 6, -3, -1, -1], [-1, -3, 7, 0, -2], [-1, -1, 0, 3, 0], [0, -1, -2, 0, 3]]], [177, [[2, -1, -1, 0, 0, 0], [-1, 2, 0, 0, -1, 0], [-1, 0, 4, 0, -1, -1], [0, 0, 0, 3, 0, -2], [0, -1, -1, 0, 3, 0], [0, 0, -1, -2, 0, 5]]]]], ['o9_13182', [6, 6, 6, 5, 2, 2, 2], [[146, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 4, -1, 0], [-1, 0, 0, 0, -1, 5, -2], [0, 0, 0, -1, 0, -2, 3]]], [147, [[2, 0, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, -1, 0], [0, -1, 2, 0, 0, -1, 0, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, -1, 0, 0, 4, 0, 0], [0, -1, 0, 0, 0, 0, 3, -1], [-1, 0, 0, 0, -1, 0, -1, 3]]]]], ['o9_13188', [6, 6, 6, 6, 4, 3], [[171, [[2, 0, 0, 0, -1, -1, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 3, 0, 0], [-1, 0, 0, 0, 0, 6, -3], [0, 0, 0, -1, 0, -3, 4]]], [172, [[2, -1, 0, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 0, 4, -2], [0, -1, 0, 0, -1, 0, -2, 4]]]]], ['o9_13400', [8, 8, 7, 2, 2, 2], [[190, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 2, 0, 0, -1], [0, 0, 0, 5, -1, 0], [-1, 0, 0, -1, 5, -2], [0, 0, -1, 0, -2, 3]]], [191, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, -1], [0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, 0, 0, 5, 0, 0], [0, 0, -1, 0, 0, 3, -1], [-1, -1, 0, -1, 0, -1, 4]]]]], ['o9_13403', [11, 7, 4, 2], [[191, [[7, -1, -2, -2], [-1, 5, -2, -1], [-2, -2, 5, -1], [-2, -1, -1, 4]]], [192, [[2, -1, 0, 0, -1], [-1, 8, -1, -2, -2], [0, -1, 4, -1, -1], [0, -2, -1, 3, 0], [-1, -2, -1, 0, 4]]]]], ['o9_13433', [12, 5, 5, 3, 2], [[208, [[2, 0, -1, 0, -1], [0, 6, -2, -1, -1], [-1, -2, 6, -1, -1], [0, -1, -1, 3, 0], [-1, -1, -1, 0, 3]]], [209, [[2, 0, -1, 0, -1, 0], [0, 2, 0, -1, 0, -1], [-1, 0, 5, 0, -1, -1], [0, -1, 0, 3, 0, -1], [-1, 0, -1, 0, 3, 0], [0, -1, -1, -1, 0, 4]]]]], ['o9_13508', [13, 6, 4, 3], [[232, [[2, 0, -1, -1, 0], [0, 7, -1, -2, -1], [-1, -1, 6, 0, -3], [-1, -2, 0, 3, 0], [0, -1, -3, 0, 4]]], [233, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0], [0, 0, 7, -1, -2, -1], [0, 0, -1, 4, 0, -2], [0, -1, -2, 0, 3, 0], [-1, 0, -1, -2, 0, 4]]]]], ['o9_13537', [11, 6, 5, 2, 2, 2], [[195, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 3, 0, 0, -1], [0, 0, 0, 3, -2, -1], [-1, 0, 0, -2, 5, -1], [0, 0, -1, -1, -1, 4]]], [196, [[2, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, -1, 0], [0, -1, 2, 0, 0, 0, 0], [0, 0, 0, 3, 0, 0, -1], [-1, 0, 0, 0, 3, -1, -1], [0, -1, 0, 0, -1, 3, -1], [0, 0, 0, -1, -1, -1, 4]]]]], ['o9_13604', [6, 6, 6, 6, 5, 2, 2], [[178, [[2, 0, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, 0, 0, 0, 4, -1, 0], [-1, 0, 0, 0, -1, 5, -2], [0, 0, 0, -1, 0, -2, 3]]], [179, [[2, 0, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, 0, -1, -1], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 0, 4, 0, 0], [0, -1, 0, 0, 0, 0, 3, -1], [-1, -1, 0, 0, -1, 0, -1, 4]]]]], ['o9_13639', [8, 8, 6, 3, 2], [[178, [[2, 0, 0, 0, -1], [0, 4, -1, -3, 0], [0, -1, 5, 0, -3], [0, -3, 0, 5, -1], [-1, 0, -3, -1, 5]]], [179, [[2, 0, -1, 0, -1, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 4, 0, 0, 0], [0, 0, 0, 3, 0, -1], [-1, 0, 0, 0, 3, -1], [0, -1, 0, -1, -1, 3]]]]], ['o9_13649', [11, 4, 4, 2], [[158, [[2, -1, 0, -1], [-1, 7, -2, -1], [0, -2, 5, -2], [-1, -1, -2, 5]]], [159, [[2, 0, -1, 0, 0], [0, 2, -1, 0, -1], [-1, -1, 7, -1, -1], [0, 0, -1, 3, -2], [0, -1, -1, -2, 5]]]]], ['o9_13666', [11, 7, 3, 3], [[190, [[2, 0, 0, -1, -1], [0, 2, -1, -1, 0], [0, -1, 6, 0, -3], [-1, -1, 0, 6, 0], [-1, 0, -3, 0, 4]]], [191, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, 0, -1, 0], [0, 0, 0, 8, -3, -3], [0, 0, -1, -3, 4, 0], [0, -1, 0, -3, 0, 4]]]]], ['o9_13720', [10, 10, 4, 4, 3], [[243, [[2, 0, 0, -1, -1, 0], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, 0], [-1, 0, 0, 0, 6, -3], [0, 0, -1, 0, -3, 5]]], [244, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, -1, 0, 3, 0, 0], [0, 0, 0, 0, 0, 4, -2], [0, -1, 0, -1, 0, -2, 5]]]]], ['o9_13952', [13, 5, 5, 2, 2], [[228, [[2, 0, -1, -1, 0], [0, 2, -1, 0, -1], [-1, -1, 7, 0, -2], [-1, 0, 0, 5, -1], [0, -1, -2, -1, 4]]], [229, [[2, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, -1], [0, 0, -1, 8, -2, -2], [0, -1, 0, -2, 3, 0], [-1, 0, -1, -2, 0, 4]]]]], ['o9_14018', [13, 7, 6, 3, 3], [[274, [[2, 0, 0, -1, -1, 0], [0, 2, 0, 0, -1, -1], [0, 0, 3, 0, -1, 0], [-1, 0, 0, 3, 0, -1], [-1, -1, -1, 0, 7, -3], [0, -1, 0, -1, -3, 5]]], [275, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1, 0], [0, 0, 0, 3, 0, 0, -1], [-1, 0, 0, 0, 3, -1, -1], [0, 0, -1, 0, -1, 4, 0], [0, -1, 0, -1, -1, 0, 4]]]]], ['o9_14079', [13, 4, 4, 4, 2, 2], [[226, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, 0, -1, 0], [-1, 0, 0, 6, 0, -2], [0, 0, -1, 0, 3, -1], [-1, -1, 0, -2, -1, 6]]], [227, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, 0, -1], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 2, 0, -1, 0], [-1, -1, 0, 0, 6, 0, -1], [0, 0, 0, -1, 0, 3, -1], [0, -1, -1, 0, -1, -1, 4]]]]], ['o9_14136', [9, 5, 4, 4], [[141, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, -1, 0, -1], [0, 0, -1, 3, 0, 0], [0, 0, 0, 0, 6, -1], [0, -1, -1, 0, -1, 3]]], [142, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 2, -1, 0, -1], [0, 0, 0, -1, 3, 0, 0], [-1, 0, 0, 0, 0, 6, -1], [0, 0, -1, -1, 0, -1, 3]]]]], ['o9_14364', [7, 7, 6, 2, 2], [[143, [[2, 0, 0, -1, -1], [0, 2, 0, 0, -1], [0, 0, 7, -4, -2], [-1, 0, -4, 6, 0], [-1, -1, -2, 0, 4]]], [144, [[2, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, 0], [0, 0, 2, 0, 0, -1], [0, 0, 0, 5, -1, 0], [0, -1, 0, -1, 3, -1], [-1, 0, -1, 0, -1, 3]]]]], ['o9_14376', [10, 10, 6, 3, 3], [[256, [[2, 0, 0, -1, 0, 0], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 7, -2, -3], [0, 0, 0, -2, 3, -1], [0, 0, -1, -3, -1, 6]]], [257, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [0, 0, -1, 0, 5, -2, -2], [0, 0, 0, 0, -2, 3, -1], [-1, 0, 0, -1, -2, -1, 6]]]]], ['o9_14495', [10, 7, 3, 3, 2, 2], [[176, [[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, -1], [0, -1, 3, 0, 0, 0], [0, 0, 0, 4, -2, -2], [-1, 0, 0, -2, 5, -1], [0, -1, 0, -2, -1, 4]]], [177, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 3, 0, 0, 0], [-1, 0, 0, 0, 4, -1, -2], [0, -1, 0, 0, -1, 3, -1], [0, 0, -1, 0, -2, -1, 4]]]]], ['o9_14599', [13, 6, 6, 2, 2, 2], [[254, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, -1, -1], [0, -1, 0, 5, 0, -2], [0, 0, -1, 0, 4, -2], [-1, 0, -1, -2, -2, 7]]], [255, [[2, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0, -1], [0, -1, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, -1, -1], [-1, 0, -1, 0, 5, 0, -1], [0, 0, 0, -1, 0, 4, -2], [0, -1, 0, -1, -1, -2, 5]]]]], ['o9_14716', [7, 7, 7, 6, 2, 2, 2], [[196, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 7, -3, -2], [0, 0, 0, 0, -3, 4, 0], [-1, 0, 0, -1, -2, 0, 4]]], [197, [[2, 0, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0, -1, 0], [0, -1, 2, 0, 0, -1, 0, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [0, 0, -1, 0, 0, 5, -1, 0], [0, -1, 0, 0, 0, -1, 3, -1], [-1, 0, 0, 0, -1, 0, -1, 3]]]]], ['o9_14831', [8, 3, 2], [[79, [[2, 0, 0, -1], [0, 6, -1, -1], [0, -1, 3, 0], [-1, -1, 0, 3]]], [80, [[2, -1, 0, -1, 0], [-1, 2, 0, 0, -1], [0, 0, 6, -1, -1], [-1, 0, -1, 3, 0], [0, -1, -1, 0, 3]]]]], ['o9_14974', [11, 8, 3, 2, 2], [[203, [[2, -1, -1, 0, 0], [-1, 7, 0, 0, -4], [-1, 0, 3, -1, -1], [0, 0, -1, 4, 0], [0, -4, -1, 0, 5]]], [204, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, -1, 0], [0, 0, 8, 0, -2, -4], [-1, -1, 0, 3, 0, 0], [0, -1, -2, 0, 3, 0], [-1, 0, -4, 0, 0, 5]]]]], ['o9_15506', [11, 7, 4, 3, 2, 2], [[204, [[2, 0, -1, 0, -1, 0], [0, 3, 0, 0, 0, -1], [-1, 0, 4, 0, -1, -2], [0, 0, 0, 4, -1, -1], [-1, 0, -1, -1, 3, 0], [0, -1, -2, -1, 0, 4]]], [205, [[2, 0, 0, -1, 0, 0, 0], [0, 2, 0, -1, -1, 0, 0], [0, 0, 3, 0, 0, -1, 0], [-1, -1, 0, 4, 0, 0, -2], [0, -1, 0, 0, 3, -1, 0], [0, 0, -1, 0, -1, 3, -1], [0, 0, 0, -2, 0, -1, 3]]]]], ['o9_15633', [12, 7, 4, 3, 2], [[223, [[6, 0, -1, -1, -2], [0, 3, 0, -1, 0], [-1, 0, 3, -1, -1], [-1, -1, -1, 4, 0], [-2, 0, -1, 0, 3]]], [224, [[2, 0, 0, -1, -1, 0], [0, 6, -1, -1, 0, -2], [0, -1, 3, 0, -1, 0], [-1, -1, 0, 3, 0, -1], [-1, 0, -1, 0, 3, 0], [0, -2, 0, -1, 0, 3]]]]], ['o9_15997', [13, 9, 4, 3, 2], [[280, [[7, -1, -1, 0, -3], [-1, 5, -2, -1, -1], [-1, -2, 3, 0, 0], [0, -1, 0, 3, 0], [-3, -1, 0, 0, 4]]], [281, [[2, -1, 0, 0, -1, 0], [-1, 7, 0, -1, 0, -3], [0, 0, 4, -1, -2, 0], [0, -1, -1, 3, 0, -1], [-1, 0, -2, 0, 3, 0], [0, -3, 0, -1, 0, 4]]]]], ['o9_16065', [14, 9, 5, 4, 2, 2], [[327, [[2, 0, -1, 0, 0, 0], [0, 3, 0, 0, -1, 0], [-1, 0, 7, -1, -1, -2], [0, 0, -1, 3, -1, -1], [0, -1, -1, -1, 3, 0], [0, 0, -2, -1, 0, 3]]], [328, [[2, 0, 0, 0, 0, -1, 0], [0, 2, 0, -1, -1, 0, 0], [0, 0, 3, 0, 0, -1, 0], [0, -1, 0, 5, -1, -1, -2], [0, -1, 0, -1, 3, 0, 0], [-1, 0, -1, -1, 0, 4, -1], [0, 0, 0, -2, 0, -1, 3]]]]], ['o9_16141', [11, 11, 5, 5, 2, 2], [[301, [[2, 0, 0, 0, -1, 0], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, 0], [-1, 0, 0, -1, 5, -2], [0, 0, -1, 0, -2, 4]]], [302, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1, -1], [0, 0, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, -1, 0, 4, 0, 0], [0, -1, 0, 0, 0, 3, -1], [-1, -1, 0, -1, 0, -1, 5]]]]], ['o9_16157', [9, 9, 9, 5, 3, 2], [[282, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 6, -1, -2, -1], [0, 0, -1, 3, 0, -2], [0, 0, -2, 0, 3, -1], [0, -1, -1, -2, -1, 6]]], [283, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 4, 0, -2, -1], [-1, 0, 0, 0, 3, 0, 0], [0, 0, 0, -2, 0, 3, -1], [-1, 0, -1, -1, 0, -1, 5]]]]], ['o9_16181', [13, 8, 5, 3, 3], [[278, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, -1], [0, 0, 3, 0, -1, 0], [-1, 0, 0, 7, -2, -2], [0, -1, -1, -2, 4, 0], [0, -1, 0, -2, 0, 3]]], [279, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, -1, -1], [0, 0, 0, 3, 0, -1, 0], [0, 0, 0, 0, 5, -1, -2], [-1, 0, -1, -1, -1, 4, 0], [0, 0, -1, 0, -2, 0, 3]]]]], ['o9_16319', [9, 9, 9, 4, 4, 2, 2], [[284, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 6, -1, -2], [0, -1, 0, 0, -1, 3, 0], [-1, 0, 0, -1, -2, 0, 5]]], [285, [[2, 0, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1, 0, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [0, -1, -1, 0, 0, 4, -1, 0], [0, -1, 0, 0, 0, -1, 3, -1], [-1, 0, 0, 0, -1, 0, -1, 4]]]]], ['o9_16356', [8, 8, 8, 3, 3, 3], [[221, [[2, 0, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [-1, 0, -1, 0, 0, 6, -2], [-1, 0, 0, 0, -1, -2, 5]]], [222, [[2, -1, 0, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 0, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, 0, 0, -1, 0, 0, 4, -2], [0, -1, 0, 0, 0, -1, -2, 5]]]]], ['o9_16527', [8, 8, 8, 5, 2, 2], [[226, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 4, -1, -3], [-1, 0, 0, -1, 5, 0], [-1, 0, -1, -3, 0, 6]]], [227, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 4, 0, -3], [0, -1, 0, 0, 0, 3, -2], [0, 0, 0, -1, -3, -2, 7]]]]], ['o9_16642', [11, 11, 6, 4, 2, 2], [[303, [[2, 0, 0, 0, -1, -1], [0, 2, 0, 0, 0, -1], [0, 0, 7, -2, -2, -2], [0, 0, -2, 3, 0, 0], [-1, 0, -2, 0, 3, 0], [-1, -1, -2, 0, 0, 5]]], [304, [[2, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, 0, 0, 0, -1], [0, 0, 0, 5, -1, -2, 0], [0, -1, 0, -1, 3, 0, -1], [0, -1, 0, -2, 0, 3, 0], [-1, 0, -1, 0, -1, 0, 4]]]]], ['o9_16748', [7, 7, 7, 5, 3, 2], [[186, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 6, -1, -2, -1], [0, 0, -1, 3, 0, -1], [0, 0, -2, 0, 3, 0], [0, -1, -1, -1, 0, 3]]], [187, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 4, 0, -2, -1], [-1, 0, 0, 0, 3, 0, -1], [0, 0, 0, -2, 0, 3, 0], [-1, 0, -1, -1, -1, 0, 4]]]]], ['o9_16920', [8, 5, 3, 3, 2], [[112, [[2, -1, 0, 0, -1], [-1, 3, 0, 0, 0], [0, 0, 5, -3, -1], [0, 0, -3, 5, -1], [-1, 0, -1, -1, 3]]], [113, [[2, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, -1], [0, -1, 3, 0, 0, 0], [-1, 0, 0, 5, -2, -1], [0, 0, 0, -2, 3, -1], [0, -1, 0, -1, -1, 3]]]]], ['o9_17450', [11, 6, 4, 2], [[178, [[6, 0, -2, -2], [0, 5, -3, -1], [-2, -3, 6, 0], [-2, -1, 0, 3]]], [179, [[2, -1, 0, 0, 0], [-1, 6, 0, -1, -2], [0, 0, 5, -3, -1], [0, -1, -3, 4, 0], [0, -2, -1, 0, 3]]]]], ['o9_18007', [7, 7, 6, 4, 3], [[161, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1], [0, 0, 5, -2, -1, -1], [-1, 0, -2, 3, 0, 0], [0, 0, -1, 0, 4, 0], [-1, -1, -1, 0, 0, 3]]], [162, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, -1, 0], [0, 0, 2, 0, 0, 0, -1], [0, 0, 0, 5, -2, -2, 0], [0, 0, 0, -2, 4, 0, -1], [0, -1, 0, -2, 0, 3, 0], [-1, 0, -1, 0, -1, 0, 3]]]]], ['o9_18209', [7, 7, 7, 4, 4], [[182, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [-1, 0, -1, 0, 0, 7, -2], [0, -1, 0, 0, -1, -2, 4]]], [183, [[2, -1, 0, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, 0, -1], [0, 0, 0, 2, 0, 0, -1, 0], [0, 0, 0, 0, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, 0, 0, -1, 0, 0, 5, -2], [0, 0, -1, 0, 0, -1, -2, 4]]]]], ['o9_18633', [11, 5, 5, 2, 2, 2], [[184, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, -1, -1], [0, -1, 0, 5, -1, -1], [0, 0, -1, -1, 5, -1], [-1, 0, -1, -1, -1, 4]]], [185, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, -1], [0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, 0, 0, 4, -1, 0], [0, 0, -1, 0, -1, 3, 0], [-1, -1, 0, -1, 0, 0, 4]]]]], ['o9_18813', [9, 6, 4, 2], [[138, [[4, 0, -1, -2], [0, 3, -1, -2], [-1, -1, 5, -1], [-2, -2, -1, 6]]], [139, [[2, -1, 0, 0, 0], [-1, 4, 0, -1, -1], [0, 0, 3, -1, -2], [0, -1, -1, 5, -1], [0, -1, -2, -1, 4]]]]], ['o9_19130', [7, 6, 5, 2, 2], [[119, [[2, 0, 0, 0, -1], [0, 5, 0, -3, -1], [0, 0, 3, 0, -1], [0, -3, 0, 4, -1], [-1, -1, -1, -1, 4]]], [120, [[2, 0, 0, 0, -1, 0], [0, 2, 0, -1, 0, -1], [0, 0, 5, -1, -3, -1], [0, -1, -1, 3, 0, 0], [-1, 0, -3, 0, 4, 0], [0, -1, -1, 0, 0, 3]]]]], ['o9_20219', [10, 8, 3, 3, 2], [[187, [[2, -1, 0, -1, 0], [-1, 5, -2, 0, -1], [0, -2, 7, -1, -3], [-1, 0, -1, 3, 0], [0, -1, -3, 0, 4]]], [188, [[2, 0, -1, 0, -1, 0], [0, 2, -1, 0, -1, 0], [-1, -1, 4, 0, 0, -1], [0, 0, 0, 4, 0, -3], [-1, -1, 0, 0, 3, 0], [0, 0, -1, -3, 0, 5]]]]], ['o9_21893', [7, 4, 4, 3], [[92, [[2, 0, 0, -1, -1], [0, 2, 0, 0, -1], [0, 0, 6, -4, -1], [-1, 0, -4, 6, 0], [-1, -1, -1, 0, 3]]], [93, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 4, -1, -1], [0, 0, 0, -1, 4, 0], [0, -1, -1, -1, 0, 3]]]]], ['o9_21918', [5, 5, 5, 3, 3, 2], [[98, [[2, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 3, -1, -1], [0, 0, 0, -1, 5, -3], [0, 0, -1, -1, -3, 5]]], [99, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 3, 0, -1], [0, 0, 0, 0, 0, 3, -1], [-1, 0, 0, -1, -1, -1, 4]]]]], ['o9_22129', [10, 3, 3], [[121, [[2, -1, 0, 0, 0], [-1, 2, 0, -1, 0], [0, 0, 2, -1, -1], [0, -1, -1, 7, 0], [0, 0, -1, 0, 4]]], [122, [[2, -1, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, 0], [0, 0, 0, 2, -1, -1], [0, 0, -1, -1, 7, 0], [-1, 0, 0, -1, 0, 4]]]]], ['o9_22477', [8, 3, 3, 3, 2], [[96, [[2, -1, 0, 0, -1], [-1, 2, 0, 0, 0], [0, 0, 6, -3, -1], [0, 0, -3, 5, -1], [-1, 0, -1, -1, 3]]], [97, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, 0, 0, 0], [-1, 0, 0, 5, -1, -1], [0, 0, 0, -1, 3, 0], [-1, -1, 0, -1, 0, 3]]]]], ['o9_22607', [9, 5], [[110, [[2, -1, 0, -1, 0], [-1, 2, -1, 0, 0], [0, -1, 2, 0, -1], [-1, 0, 0, 6, -3], [0, 0, -1, -3, 8]]], [111, [[2, -1, 0, 0, -1, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 2, 0, 0], [-1, 0, 0, 0, 6, -3], [0, 0, 0, 0, -3, 6]]]]], ['o9_22663', [9, 5, 5, 2, 2], [[140, [[2, 0, -1, -1, 0], [0, 2, 0, 0, -1], [-1, 0, 5, -2, -1], [-1, 0, -2, 5, -1], [0, -1, -1, -1, 4]]], [141, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, 0], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 4, -1, -1], [0, -1, 0, -1, 3, 0], [-1, 0, -1, -1, 0, 4]]]]], ['o9_22698', [9, 9, 4, 2, 2], [[187, [[2, 0, 0, -1, -1], [0, 2, 0, 0, -1], [0, 0, 3, -1, -1], [-1, 0, -1, 5, -2], [-1, -1, -1, -2, 7]]], [188, [[2, 0, 0, 0, 0, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, -1], [0, -1, 0, -1, 3, -1], [-1, 0, -1, -1, -1, 6]]]]], ['o9_22925', [6, 6, 5, 4, 2, 2], [[122, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1], [0, 0, 4, -1, -2, 0], [-1, 0, -1, 5, -1, -2], [0, 0, -2, -1, 3, 0], [0, -1, 0, -2, 0, 3]]], [123, [[2, 0, 0, -1, 0, 0, -1], [0, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, 0, 0, -1], [-1, 0, 0, 4, 0, -2, 0], [0, -1, 0, 0, 3, -1, -1], [0, 0, 0, -2, -1, 3, 0], [-1, 0, -1, 0, -1, 0, 3]]]]], ['o9_23023', [9, 9, 5, 4, 3, 2], [[217, [[2, 0, 0, 0, 0, -1], [0, 3, 0, -1, -1, -1], [0, 0, 3, -2, -1, 0], [0, -1, -2, 6, -1, 0], [0, -1, -1, -1, 3, 0], [-1, -1, 0, 0, 0, 3]]], [218, [[2, 0, 0, -1, 0, -1, 0], [0, 2, 0, 0, 0, 0, -1], [0, 0, 3, 0, -1, -1, -1], [-1, 0, 0, 3, 0, 0, 0], [0, 0, -1, 0, 3, -1, 0], [-1, 0, -1, 0, -1, 3, 0], [0, -1, -1, 0, 0, 0, 3]]]]], ['o9_23263', [11, 4, 4, 3, 3], [[173, [[2, 0, 0, 0, 0, -1], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, -1, -1], [0, -1, 0, 4, 0, 0], [0, 0, -1, 0, 5, 0], [-1, -1, -1, 0, 0, 3]]], [174, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 2, 0, -1, -1], [0, 0, -1, 0, 4, 0, 0], [-1, 0, 0, -1, 0, 5, 0], [0, -1, -1, -1, 0, 0, 3]]]]], ['o9_23660', [11, 7, 4], [[189, [[2, -1, 0, -1, 0], [-1, 2, -1, 0, 0], [0, -1, 7, -2, -2], [-1, 0, -2, 7, -3], [0, 0, -2, -3, 5]]], [190, [[2, -1, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 7, -2, -2], [0, 0, 0, -2, 5, -2], [-1, 0, 0, -2, -2, 5]]]]], ['o9_23955', [7, 7, 7, 4], [[166, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [-1, 0, 0, 0, 7, -3], [0, -1, 0, -1, -3, 6]]], [167, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, 0, 0, 0, 0, 5, -3], [0, 0, -1, 0, -1, -3, 6]]]]], ['o9_23961', [10, 7, 3, 3, 3], [[178, [[2, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [0, 0, -1, 3, 0, 0], [0, 0, 0, 0, 6, -2], [-1, -1, 0, 0, -2, 4]]], [179, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 3, 0, 0], [-1, 0, 0, 0, 0, 6, -2], [0, -1, -1, 0, 0, -2, 4]]]]], ['o9_23977', [9, 8, 3, 3, 3], [[174, [[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [0, 0, -1, 5, -1, -2], [-1, 0, 0, -1, 5, -2], [0, -1, 0, -2, -2, 5]]], [175, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, -1, 0], [0, -1, 0, 0, 3, -1, -1], [0, 0, 0, -1, -1, 4, -1], [0, 0, 0, 0, -1, -1, 4]]]]], ['o9_24149', [7, 7, 7, 3, 3, 3], [[176, [[2, 0, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [-1, 0, -1, 0, 0, 6, -4], [0, 0, 0, 0, -1, -4, 6]]], [177, [[2, -1, 0, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0, 0, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 0, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, 0, 0, -1, 0, 0, 4, -3], [-1, 0, 0, 0, 0, -1, -3, 6]]]]], ['o9_24183', [14, 8, 5, 3, 2], [[299, [[6, 0, -1, -1, -2], [0, 6, -1, -2, 0], [-1, -1, 3, 0, -1], [-1, -2, 0, 3, 0], [-2, 0, -1, 0, 3]]], [300, [[2, 0, 0, -1, 0, 0], [0, 7, 0, -1, -2, -2], [0, 0, 3, 0, -2, 0], [-1, -1, 0, 3, 0, -1], [0, -2, -2, 0, 4, 0], [0, -2, 0, -1, 0, 3]]]]], ['o9_24534', [9, 4, 4, 4], [[132, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, -1, 0, -1], [0, 0, -1, 2, 0, 0], [0, 0, 0, 0, 7, -5], [0, -1, -1, 0, -5, 7]]], [133, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, -1], [0, 0, 0, -1, 2, 0, 0], [0, 0, -1, 0, 0, 7, -4], [0, 0, 0, -1, 0, -4, 5]]]]], ['o9_24592', [8, 5, 2], [[95, [[2, 0, 0, -1], [0, 7, -2, -3], [0, -2, 3, -1], [-1, -3, -1, 6]]], [96, [[2, -1, 0, 0, 0], [-1, 2, 0, -1, 0], [0, 0, 6, -1, -3], [0, -1, -1, 3, -1], [0, 0, -3, -1, 5]]]]], ['o9_24886', [14, 6, 6, 3, 3], [[288, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, -1, -1], [-1, -1, 0, 5, 0, -1], [0, 0, -1, 0, 3, -1], [-1, -1, -1, -1, -1, 7]]], [289, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 2, 0, -1, -1], [-1, 0, -1, 0, 5, 0, -1], [0, 0, 0, -1, 0, 3, -1], [0, 0, -1, -1, -1, -1, 5]]]]], ['o9_24889', [9, 9, 7, 3, 3], [[231, [[2, 0, 0, -1, -1, 0], [0, 2, 0, 0, -1, 0], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 4, 0, 0], [-1, -1, 0, 0, 6, -3], [0, 0, -1, 0, -3, 4]]], [232, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1, -1], [0, 0, 0, 2, 0, 0, -1], [-1, 0, 0, 0, 4, 0, 0], [0, 0, -1, 0, 0, 4, -1], [0, -1, -1, -1, 0, -1, 4]]]]], ['o9_25595', [10, 3, 3, 3, 3], [[138, [[2, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [0, 0, -1, 2, 0, 0], [0, 0, 0, 0, 7, -4], [-1, -1, 0, 0, -4, 6]]], [139, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, 0], [0, -1, 0, 0, 0, 7, -3], [0, 0, -1, 0, 0, -3, 4]]]]], ['o9_26604', [9, 6, 4, 2, 2], [[142, [[2, 0, -1, 0, 0], [0, 4, 0, -1, -2], [-1, 0, 3, 0, -2], [0, -1, 0, 3, -1], [0, -2, -2, -1, 6]]], [143, [[2, 0, -1, 0, 0, 0], [0, 2, 0, -1, 0, 0], [-1, 0, 4, 0, -1, -1], [0, -1, 0, 3, 0, -2], [0, 0, -1, 0, 3, -1], [0, 0, -1, -2, -1, 4]]]]], ['o9_26791', [11, 6, 3, 2], [[171, [[7, 0, -3, -2], [0, 3, -2, -1], [-3, -2, 6, 0], [-2, -1, 0, 4]]], [172, [[2, -1, 0, -1, 0], [-1, 6, -1, 0, -2], [0, -1, 3, 0, 0], [-1, 0, 0, 3, -2], [0, -2, 0, -2, 5]]]]], ['o9_27155', [11, 5, 3, 2], [[160, [[7, 0, -3, -1], [0, 3, -1, 0], [-3, -1, 5, -1], [-1, 0, -1, 3]]], [161, [[2, 0, 0, -1, 0], [0, 8, -2, -2, -1], [0, -2, 3, 0, -1], [-1, -2, 0, 3, 0], [0, -1, -1, 0, 3]]]]], ['o9_27261', [8, 8, 7, 3, 3, 2], [[200, [[2, 0, -1, -1, 0, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 6, -1, -2, -1], [-1, 0, -1, 3, 0, -1], [0, 0, -2, 0, 4, 0], [0, -1, -1, -1, 0, 3]]], [201, [[2, 0, 0, 0, 0, -1, -1], [0, 2, 0, -1, 0, -1, 0], [0, 0, 2, 0, 0, 0, -1], [0, -1, 0, 5, -1, -1, 0], [0, 0, 0, -1, 3, 0, -1], [-1, -1, 0, -1, 0, 3, 0], [-1, 0, -1, 0, -1, 0, 3]]]]], ['o9_27392', [7, 7, 7, 6, 3, 3], [[203, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, 0, -1], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 7, -2, -3], [0, 0, 0, 0, -2, 3, 0], [0, -1, 0, -1, -3, 0, 5]]], [204, [[2, -1, 0, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, -1, -1, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [0, 0, -1, 0, 0, 5, -2, 0], [0, 0, -1, 0, 0, -2, 4, -1], [-1, 0, 0, 0, -1, 0, -1, 3]]]]], ['o9_27480', [11, 4, 4], [[156, [[2, -1, 0, -1, 0], [-1, 2, 0, 0, -1], [0, 0, 2, -1, -1], [-1, 0, -1, 7, -2], [0, -1, -1, -2, 7]]], [157, [[2, -1, 0, 0, -1, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, 0], [0, 0, 0, 2, -1, -1], [-1, 0, 0, -1, 7, -2], [0, 0, 0, -1, -2, 5]]]]], ['o9_27737', [10, 7, 3], [[161, [[2, -1, -1, 0, 0], [-1, 2, 0, 0, -1], [-1, 0, 7, 0, -4], [0, 0, 0, 4, -3], [0, -1, -4, -3, 8]]], [162, [[2, -1, 0, -1, 0, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, 0], [-1, 0, 0, 7, 0, -4], [0, 0, -1, 0, 4, -2], [0, 0, 0, -4, -2, 6]]]]], ['o9_28113', [6, 6, 6, 6, 5, 3, 2], [[183, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 6, -1, -2, -3], [0, 0, 0, -1, 3, 0, 0], [0, 0, 0, -2, 0, 3, 0], [0, 0, -1, -3, 0, 0, 4]]], [184, [[2, 0, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 0, 4, 0, -2, 0], [-1, 0, 0, 0, 0, 3, 0, -2], [0, 0, 0, 0, -2, 0, 3, -1], [0, 0, 0, -1, 0, -2, -1, 4]]]]], ['o9_28153', [9, 9, 5, 2, 2], [[196, [[2, 0, 0, -1, -1], [0, 2, 0, 0, -1], [0, 0, 4, -1, -2], [-1, 0, -1, 5, -2], [-1, -1, -2, -2, 7]]], [197, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, 0], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 4, 0, -2], [0, -1, 0, 0, 3, -1], [-1, 0, -1, -2, -1, 6]]]]], ['o9_28529', [13, 7, 4, 3], [[245, [[2, -1, 0, -1, 0], [-1, 6, -1, 0, -2], [0, -1, 7, -2, -1], [-1, 0, -2, 3, 0], [0, -2, -1, 0, 3]]], [246, [[2, -1, -1, 0, 0, 0], [-1, 2, 0, 0, -1, 0], [-1, 0, 6, -1, 0, -2], [0, 0, -1, 4, 0, -1], [0, -1, 0, 0, 3, 0], [0, 0, -2, -1, 0, 3]]]]], ['o9_28592', [8, 8, 7, 4, 3], [[204, [[2, 0, -1, -1, 0, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 7, 0, -2, -4], [-1, 0, 0, 3, 0, 0], [0, 0, -2, 0, 3, 0], [0, -1, -4, 0, 0, 5]]], [205, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, 0, -1], [0, 0, 0, 5, 0, -3, 0], [-1, 0, 0, 0, 3, 0, -2], [0, 0, 0, -3, 0, 4, -1], [0, 0, -1, 0, -2, -1, 4]]]]], ['o9_28746', [11, 5, 5, 3, 3], [[191, [[2, 0, 0, 0, -1, 0], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, -1, -1], [0, -1, 0, 6, -1, -2], [-1, 0, -1, -1, 4, 0], [0, -1, -1, -2, 0, 4]]], [192, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1, -1], [0, 0, 0, 2, 0, 0, -1], [0, -1, 0, 0, 4, -1, 0], [0, 0, -1, 0, -1, 4, -1], [-1, 0, -1, -1, 0, -1, 4]]]]], ['o9_28810', [9, 9, 4, 4, 3, 2], [[208, [[2, 0, -1, 0, -1, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 5, -2, 0, -1], [0, 0, -2, 3, 0, -1], [-1, 0, 0, 0, 3, 0], [0, -1, -1, -1, 0, 4]]], [209, [[2, 0, 0, 0, 0, -1, -1], [0, 2, 0, -1, 0, 0, 0], [0, 0, 2, 0, 0, 0, -1], [0, -1, 0, 4, -1, -2, 0], [0, 0, 0, -1, 3, 0, -1], [-1, 0, 0, -2, 0, 3, 0], [-1, 0, -1, 0, -1, 0, 4]]]]], ['o9_29246', [8, 8, 8, 6, 3, 3], [[248, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, 0, -1], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 7, -2, -1], [0, 0, 0, 0, -2, 3, 0], [-1, -1, 0, -1, -1, 0, 4]]], [249, [[2, -1, 0, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1, 0, -1], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [0, 0, -1, 0, 0, 5, -2, -1], [0, 0, 0, 0, 0, -2, 3, 0], [0, -1, -1, 0, -1, -1, 0, 4]]]]], ['o9_29436', [9, 9, 8, 3, 3, 2], [[249, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1], [0, 0, 7, -1, -3, -3], [-1, 0, -1, 3, 0, 0], [0, 0, -3, 0, 4, 0], [0, -1, -3, 0, 0, 4]]], [250, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, 0, -1], [0, 0, 2, 0, 0, 0, -1], [0, 0, 0, 5, 0, -2, 0], [-1, -1, 0, 0, 3, 0, -1], [0, 0, 0, -2, 0, 3, -1], [0, -1, -1, 0, -1, -1, 4]]]]], ['o9_29529', [8, 7, 5, 3, 2], [[152, [[5, 0, 0, -2, -2], [0, 3, -1, 0, -1], [0, -1, 3, 0, -1], [-2, 0, 0, 3, -1], [-2, -1, -1, -1, 5]]], [153, [[2, -1, -1, 0, 0, 0], [-1, 5, 0, -1, -2, -1], [-1, 0, 3, 0, 0, -1], [0, -1, 0, 3, -1, 0], [0, -2, 0, -1, 3, 0], [0, -1, -1, 0, 0, 3]]]]], ['o9_30375', [11, 6, 5, 3, 3], [[202, [[2, 0, 0, -1, -1, 0], [0, 2, 0, 0, -1, 0], [0, 0, 3, 0, 0, -1], [-1, 0, 0, 3, -1, -1], [-1, -1, 0, -1, 6, -1], [0, 0, -1, -1, -1, 3]]], [203, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, -1, 0], [0, 0, 0, 3, 0, 0, -1], [-1, 0, 0, 0, 3, -1, -1], [0, 0, -1, 0, -1, 4, -1], [0, 0, 0, -1, -1, -1, 3]]]]], ['o9_30721', [7, 7, 4, 4, 2], [[135, [[2, 0, -1, 0, 0], [0, 2, 0, 0, -1], [-1, 0, 5, -2, -1], [0, 0, -2, 5, -2], [0, -1, -1, -2, 4]]], [136, [[2, 0, 0, 0, 0, -1], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, -1], [0, 0, 0, -1, 3, -2], [-1, 0, -1, -1, -2, 5]]]]], ['o9_30790', [13, 6, 6, 3, 3], [[261, [[2, 0, 0, 0, 0, -1], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, -1, -1], [0, -1, 0, 6, 0, -3], [0, 0, -1, 0, 3, -1], [-1, -1, -1, -3, -1, 7]]], [262, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 2, 0, -1, -1], [0, -1, -1, 0, 6, 0, -2], [0, 0, 0, -1, 0, 3, -1], [0, 0, -1, -1, -2, -1, 5]]]]], ['o9_31165', [11, 7, 4, 3, 3], [[206, [[2, 0, 0, -1, -1, 0], [0, 2, 0, 0, -1, -1], [0, 0, 3, 0, -1, 0], [-1, 0, 0, 7, 0, -2], [-1, -1, -1, 0, 3, 0], [0, -1, 0, -2, 0, 3]]], [207, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1, 0], [0, 0, 0, 3, 0, 0, -1], [0, 0, 0, 0, 5, -3, -2], [0, 0, -1, 0, -3, 4, 0], [0, -1, 0, -1, -2, 0, 4]]]]], ['o9_32132', [7, 5, 3], [[85, [[2, -1, -1, 0], [-1, 4, -1, -1], [-1, -1, 6, -2], [0, -1, -2, 4]]]]], ['o9_32257', [7, 6, 3], [[96, [[2, 0, 0, -1], [0, 5, -1, -3], [0, -1, 5, -3], [-1, -3, -3, 7]]], [97, [[2, -1, 0, 0, 0], [-1, 2, -1, 0, 0], [0, -1, 5, -1, -2], [0, 0, -1, 5, -3], [0, 0, -2, -3, 5]]]]], ['o9_32588', [5, 5, 4, 3, 2, 2], [[84, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1], [0, 0, 3, -1, -1, -1], [-1, 0, -1, 3, 0, -1], [0, 0, -1, 0, 3, 0], [0, -1, -1, -1, 0, 3]]]]], ['o9_33526', [7, 4, 4, 2, 2], [[90, [[2, 0, 0, -1, 0], [0, 2, 0, 0, -1], [0, 0, 4, -2, -1], [-1, 0, -2, 5, -1], [0, -1, -1, -1, 3]]], [91, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, 0], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 4, -1, -1], [0, -1, 0, -1, 3, -1], [0, 0, -1, -1, -1, 3]]]]], ['o9_33585', [8, 6, 3, 3, 2], [[123, [[2, -1, 0, 0, -1], [-1, 5, 0, -3, 0], [0, 0, 3, 0, -2], [0, -3, 0, 5, -1], [-1, 0, -2, -1, 4]]], [124, [[2, 0, -1, 0, 0, -1], [0, 2, -1, 0, 0, -1], [-1, -1, 4, 0, -1, 0], [0, 0, 0, 3, 0, -2], [0, 0, -1, 0, 3, 0], [-1, -1, 0, -2, 0, 4]]]]], ['o9_34403', [8, 6, 3], [[111, [[2, -1, 0, -1], [-1, 4, -1, -1], [0, -1, 5, -3], [-1, -1, -3, 7]]], [112, [[2, -1, -1, 0, 0], [-1, 2, 0, 0, 0], [-1, 0, 4, -1, -1], [0, 0, -1, 5, -3], [0, 0, -1, -3, 5]]]]], ['o9_35320', [6, 6, 5, 4, 2], [[118, [[2, 0, 0, 0, -1], [0, 3, -1, -1, 0], [0, -1, 5, -3, 0], [0, -1, -3, 6, -2], [-1, 0, 0, -2, 3]]], [119, [[2, 0, -1, 0, 0, -1], [0, 2, 0, 0, 0, -1], [-1, 0, 3, 0, -1, 0], [0, 0, 0, 4, -1, -3], [0, 0, -1, -1, 3, 0], [-1, -1, 0, -3, 0, 5]]]]], ['o9_35549', [11, 11, 5, 5, 3, 2], [[306, [[2, 0, -1, 0, -1, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 6, -1, -1, -3], [0, 0, -1, 3, 0, 0], [-1, 0, -1, 0, 3, 0], [0, -1, -3, 0, 0, 5]]], [307, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, -1, 0, 0, 0], [0, 0, 2, 0, 0, 0, -1], [0, -1, 0, 4, 0, -2, 0], [-1, 0, 0, 0, 3, 0, -2], [0, 0, 0, -2, 0, 3, -1], [0, 0, -1, 0, -2, -1, 5]]]]], ['o9_35682', [6, 6, 5, 3], [[108, [[2, 0, 0, -1, -1], [0, 2, 0, 0, -1], [0, 0, 4, -2, 0], [-1, 0, -2, 6, -1], [-1, -1, 0, -1, 3]]], [109, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, 0], [0, 0, 0, -1, 4, -1], [-1, 0, -1, 0, -1, 3]]]]], ['o9_35736', [11, 11, 6, 3, 3], [[298, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 7, -2, -1], [0, 0, 0, -2, 3, -1], [-1, 0, -1, -1, -1, 5]]], [299, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [0, 0, -1, 0, 5, -2, -1], [0, 0, 0, 0, -2, 3, -1], [0, -1, 0, -1, -1, -1, 5]]]]], ['o9_35772', [6, 6, 4, 3, 3], [[108, [[2, 0, 0, -1, -1, 0], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, 0], [-1, -1, 0, 0, 6, -3], [0, 0, -1, 0, -3, 4]]], [109, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, -1, -1, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, -1, 0, 3, 0, 0], [0, 0, -1, 0, 0, 4, -2], [0, -1, 0, -1, 0, -2, 4]]]]], ['o9_37754', [6, 6, 4, 3, 2], [[102, [[2, 0, 0, 0, -1], [0, 3, 0, -1, -1], [0, 0, 3, -1, -1], [0, -1, -1, 4, 0], [-1, -1, -1, 0, 3]]]]], ['o9_37941', [6, 6, 5, 3, 3, 2], [[120, [[2, 0, -1, 0, -1, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 3, -1, 0, 0], [0, 0, -1, 5, -1, -3], [-1, 0, 0, -1, 3, 0], [0, -1, 0, -3, 0, 4]]], [121, [[2, 0, 0, 0, 0, -1, -1], [0, 2, 0, -1, 0, -1, 0], [0, 0, 2, 0, 0, 0, -1], [0, -1, 0, 4, -2, 0, 0], [0, 0, 0, -2, 3, 0, -1], [-1, -1, 0, 0, 0, 3, 0], [-1, 0, -1, 0, -1, 0, 3]]]]], ['o9_39394', [8, 7, 4, 2, 2], [[138, [[2, -1, 0, 0, -1], [-1, 5, 0, -2, -1], [0, 0, 5, -1, -2], [0, -2, -1, 3, 0], [-1, -1, -2, 0, 4]]], [139, [[2, 0, -1, 0, 0, 0], [0, 2, 0, -1, 0, 0], [-1, 0, 3, -1, 0, -1], [0, -1, -1, 4, -2, 0], [0, 0, 0, -2, 3, -1], [0, 0, -1, 0, -1, 4]]]]], ['o9_39451', [7, 6, 3, 2, 2], [[103, [[2, 0, -1, 0, 0], [0, 3, -1, -1, -1], [-1, -1, 3, -1, 0], [0, -1, -1, 4, -1], [0, -1, 0, -1, 4]]]]], ['o9_40179', [8, 7, 3, 2, 2], [[131, [[2, -1, 0, -1, 0], [-1, 4, 0, 0, -2], [0, 0, 4, 0, -3], [-1, 0, 0, 3, -1], [0, -2, -3, -1, 6]]]]], ['o9_43001', [8, 5, 4, 2, 2], [[114, [[2, 0, -1, 0, 0], [0, 4, -1, -1, -1], [-1, -1, 4, 0, -1], [0, -1, 0, 3, -1], [0, -1, -1, -1, 3]]]]], ['o9_43679', [7, 7, 5, 3, 3], [[143, [[2, 0, 0, 0, -1, -1], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, -1], [-1, 0, 0, -1, 4, 0], [-1, -1, -1, -1, 0, 4]]]]], ['o9_43953', [9, 4, 3, 3], [[117, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 5, -2, 0], [0, 0, -2, 5, -1], [-1, -1, 0, -1, 3]]]]], ['o9_44054', [9, 5, 3, 3], [[126, [[2, 0, 0, -1, 0], [0, 2, 0, 0, -1], [0, 0, 6, -2, -2], [-1, 0, -2, 4, -1], [0, -1, -2, -1, 4]]]]], ['s042', [5, 5, 2], [[56, [[2, 0, 0, -1], [0, 2, 0, -1], [0, 0, 3, -1], [-1, -1, -1, 6]]], [57, [[2, -1, 0, 0, -1], [-1, 2, 0, -1, 0], [0, 0, 2, 0, -1], [0, -1, 0, 3, -1], [-1, 0, -1, -1, 6]]]]], ['s068', [5, 5, 3, 2, 2], [[68, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 3, -1, 0], [0, 0, -1, 4, 0], [-1, -1, 0, 0, 3]]], [69, [[2, 0, 0, -1, 0, 0], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, 0], [0, -1, 0, 0, 3, -2], [0, 0, -1, 0, -2, 4]]]]], ['s086', [3, 3, 3, 3, 2, 2], [[45, [[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [-1, 0, 0, 0, 5, -3], [0, 0, 0, -1, -3, 4]]], [46, [[2, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 0, 3, -2], [-1, 0, 0, 0, -1, -2, 4]]]]], ['s104', [7, 3, 2, 2], [[67, [[2, 0, -1, -1], [0, 6, -2, -1], [-1, -2, 5, -1], [-1, -1, -1, 3]]], [68, [[2, 0, -1, 0, -1], [0, 2, 0, -1, -1], [-1, 0, 6, -1, -1], [0, -1, -1, 3, 0], [-1, -1, -1, 0, 3]]]]], ['s114', [7, 4, 3, 2], [[79, [[3, 0, 0, -1], [0, 3, -2, -1], [0, -2, 5, -2], [-1, -1, -2, 5]]], [80, [[2, 0, -1, 0, 0], [0, 3, 0, 0, -1], [-1, 0, 3, -1, -1], [0, 0, -1, 3, -2], [0, -1, -1, -2, 5]]]]], ['s294', [5, 4, 2], [[46, [[4, -1, -2], [-1, 5, -3], [-2, -3, 6]]], [47, [[2, -1, 0, 0], [-1, 4, -1, -1], [0, -1, 5, -3], [0, -1, -3, 4]]]]], ['s301', [5, 5, 3], [[61, [[2, 0, -1, -1], [0, 2, 0, -1], [-1, 0, 6, -3], [-1, -1, -3, 6]]], [62, [[2, -1, 0, 0, 0], [-1, 2, 0, 0, -1], [0, 0, 2, 0, -1], [0, 0, 0, 4, -3], [0, -1, -1, -3, 6]]]]], ['s308', [5, 5, 2, 2, 2], [[63, [[2, -1, 0, 0, 0], [-1, 2, 0, -1, 0], [0, 0, 2, 0, -1], [0, -1, 0, 5, -3], [0, 0, -1, -3, 5]]], [64, [[2, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [0, 0, -1, 0, 3, -2], [-1, 0, 0, -1, -2, 5]]]]], ['s336', [4, 4, 3, 2, 2], [[50, [[2, 0, -1, -1, 0], [0, 2, 0, 0, -1], [-1, 0, 3, -1, 0], [-1, 0, -1, 5, -2], [0, -1, 0, -2, 3]]], [51, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, 0], [0, -1, 0, 0, 3, -1], [-1, 0, -1, 0, -1, 3]]]]], ['s344', [6, 4, 3], [[63, [[2, -1, 0, -1], [-1, 4, -2, 0], [0, -2, 7, -2], [-1, 0, -2, 3]]], [64, [[2, -1, -1, 0, 0], [-1, 2, 0, 0, 0], [-1, 0, 4, -2, -1], [0, 0, -2, 4, -2], [0, 0, -1, -2, 5]]]]], ['s346', [7, 3, 3, 2], [[72, [[2, 0, -1, -1], [0, 5, -2, -1], [-1, -2, 6, -1], [-1, -1, -1, 3]]], [73, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 5, -2, 0], [0, 0, -2, 3, 0], [-1, -1, 0, 0, 3]]]]], ['s367', [4, 4, 4, 3, 2], [[62, [[2, -1, 0, 0, 0], [-1, 2, 0, 0, -1], [0, 0, 3, -1, 0], [0, 0, -1, 5, -2], [0, -1, 0, -2, 3]]], [63, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 3, 0, 0], [0, 0, 0, 0, 3, -2], [-1, 0, -1, 0, -2, 4]]]]], ['s369', [6, 5, 2, 2], [[70, [[2, -1, -1, 0], [-1, 4, -1, -1], [-1, -1, 7, -3], [0, -1, -3, 4]]], [71, [[2, 0, -1, 0, 0], [0, 2, -1, -1, 0], [-1, -1, 4, -1, -1], [0, -1, -1, 3, -1], [0, 0, -1, -1, 5]]]]], ['s407', [7, 4, 2, 2], [[74, [[2, 0, -1, 0], [0, 6, -2, -2], [-1, -2, 5, -1], [0, -2, -1, 3]]], [75, [[2, 0, -1, 0, 0], [0, 2, 0, -1, 0], [-1, 0, 6, -1, -2], [0, -1, -1, 3, -1], [0, 0, -2, -1, 3]]]]], ['s582', [4, 4, 3, 3], [[52, [[2, 0, 0, -1, 0], [0, 2, 0, -1, 0], [0, 0, 2, 0, -1], [-1, -1, 0, 6, -4], [0, 0, -1, -4, 5]]], [53, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0], [0, 0, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [0, 0, -1, 0, 4, -3], [-1, 0, 0, -1, -3, 5]]]]], ['s665', [5, 5, 4, 2, 2], [[75, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 6, -2, -2], [0, 0, -2, 3, 0], [-1, -1, -2, 0, 4]]], [76, [[2, 0, 0, 0, 0, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, 0], [0, -1, 0, -1, 3, -1], [-1, 0, -1, 0, -1, 3]]]]], ['s684', [5, 4, 3, 2], [[55, [[4, 0, -2, -1], [0, 3, 0, -1], [-2, 0, 3, -1], [-1, -1, -1, 4]]], [56, [[2, 0, 0, -1, 0], [0, 4, -1, -2, -1], [0, -1, 3, 0, -1], [-1, -2, 0, 3, 0], [0, -1, -1, 0, 3]]]]], ['s769', [6, 5, 3, 2], [[75, [[4, 0, -2, -1], [0, 6, -1, -2], [-2, -1, 3, 0], [-1, -2, 0, 3]]], [76, [[2, 0, 0, -1, 0], [0, 5, 0, -2, -2], [0, 0, 3, 0, -2], [-1, -2, 0, 3, 0], [0, -2, -2, 0, 4]]]]], ['s800', [5, 5, 3, 3], [[70, [[2, 0, 0, -1, -1], [0, 2, 0, -1, 0], [0, 0, 2, 0, -1], [-1, -1, 0, 6, -2], [-1, 0, -1, -2, 4]]], [71, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [0, 0, -1, 0, 4, -2], [0, -1, 0, -1, -2, 4]]]]], ['t00110', [5, 5, 5, 5, 2], [[106, [[2, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [0, 0, 0, 0, 3, -1], [-1, 0, 0, -1, -1, 6]]], [107, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 0, 3, -1], [-1, 0, 0, 0, -1, -1, 6]]]]], ['t00146', [5, 5, 5, 5, 3, 2, 2], [[118, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 3, -1, 0], [0, 0, 0, 0, -1, 4, 0], [-1, 0, 0, -1, 0, 0, 3]]], [119, [[2, 0, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 0, 3, 0, 0], [0, -1, 0, 0, 0, 0, 3, -2], [0, 0, 0, 0, -1, 0, -2, 4]]]]], ['t00324', [3, 3, 3, 3, 3, 3, 2, 2], [[63, [[2, 0, 0, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [-1, 0, 0, 0, 0, 0, 5, -3], [0, 0, 0, 0, 0, -1, -3, 4]]], [64, [[2, 0, 0, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 0, 0, 0, 3, -2], [-1, 0, 0, 0, 0, 0, -1, -2, 4]]]]], ['t00423', [7, 7, 7, 3, 2, 2], [[165, [[2, 0, 0, -1, -1, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 3, -1, -1], [-1, 0, 0, -1, 5, -2], [0, 0, -1, -1, -2, 6]]], [166, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 3, 0, -1], [0, -1, 0, 0, 0, 3, -1], [-1, 0, 0, -1, -1, -1, 6]]]]], ['t00434', [7, 7, 7, 4, 3, 2], [[177, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 5, -2, -1, -1], [0, 0, -2, 5, -2, 0], [0, 0, -1, -2, 3, 0], [0, -1, -1, 0, 0, 3]]], [178, [[2, 0, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 4, -1, -1, -1], [0, 0, 0, -1, 3, -2, 0], [-1, 0, 0, -1, -2, 4, 0], [0, 0, -1, -1, 0, 0, 3]]]]], ['t00729', [7, 7, 2, 2], [[108, [[2, 0, 0, 0, -1], [0, 2, 0, -1, -1], [0, 0, 2, 0, -1], [0, -1, 0, 3, 0], [-1, -1, -1, 0, 7]]], [109, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0], [0, 0, 2, 0, -1, -1], [0, 0, 0, 2, 0, -1], [0, -1, -1, 0, 3, 0], [-1, 0, -1, -1, 0, 7]]]]], ['t00787', [7, 7, 5, 2, 2, 2], [[136, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -2, 0], [0, 0, 0, -2, 5, 0], [-1, 0, -1, 0, 0, 3]]], [137, [[2, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, -1, 0], [0, -1, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, -1, 0, 4, 0, 0], [0, -1, 0, 0, 0, 3, -2], [0, 0, 0, -1, 0, -2, 4]]]]], ['t00826', [8, 8, 3, 3, 2, 2], [[155, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, 0], [0, -1, 0, 0, 4, 0], [-1, 0, -1, 0, 0, 4]]], [156, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [-1, -1, -1, 0, 3, 0, 0], [0, -1, 0, 0, 0, 3, -2], [0, 0, 0, -1, 0, -2, 5]]]]], ['t00855', [8, 8, 5, 3], [[164, [[2, 0, 0, -1, -1], [0, 2, 0, 0, -1], [0, 0, 4, -2, -2], [-1, 0, -2, 6, -2], [-1, -1, -2, -2, 7]]], [165, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, -2], [0, 0, 0, -1, 4, -2], [-1, 0, -1, -2, -2, 7]]]]], ['t00873', [8, 8, 3, 2, 2], [[146, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 3, -1, 0], [0, 0, -1, 4, -3], [-1, -1, 0, -3, 8]]], [147, [[2, 0, 0, -1, 0, 0], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, -1], [0, -1, 0, 0, 3, -2], [0, 0, -1, -1, -2, 7]]]]], ['t00932', [8, 8, 5, 3, 3], [[173, [[2, 0, 0, 0, -1, 0], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, 0], [-1, 0, 0, -1, 4, 0], [0, -1, -1, 0, 0, 3]]], [174, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 2, 0, 0, -1], [0, -1, -1, 0, 4, -1, 0], [-1, 0, 0, 0, -1, 4, 0], [0, 0, -1, -1, 0, 0, 3]]]]], ['t01033', [5, 5, 5, 5, 3], [[111, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [-1, 0, 0, 0, 6, -3], [-1, 0, 0, -1, -3, 6]]], [112, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, 0, 0, 0, 0, 4, -3], [0, -1, 0, 0, -1, -3, 6]]]]], ['t01037', [5, 5, 5, 5, 2, 2, 2], [[113, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 0, 5, -3], [0, 0, 0, 0, -1, -3, 5]]], [114, [[2, 0, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 0, 3, -2], [-1, 0, 0, 0, 0, -1, -2, 5]]]]], ['t01125', [10, 3, 3, 2, 2], [[127, [[2, 0, 0, -1, -1], [0, 2, -1, 0, -1], [0, -1, 7, -2, 0], [-1, 0, -2, 5, -1], [-1, -1, 0, -1, 3]]], [128, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, -1], [0, 0, 2, -1, 0, -1], [-1, 0, -1, 7, -1, 0], [0, -1, 0, -1, 3, 0], [-1, -1, -1, 0, 0, 3]]]]], ['t01216', [10, 4, 3, 3], [[136, [[2, 0, 0, -1, -1], [0, 2, 0, -1, -1], [0, 0, 7, -3, -1], [-1, -1, -3, 6, 0], [-1, -1, -1, 0, 3]]], [137, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, 0, -1, -1], [-1, 0, 0, 7, -2, -1], [0, 0, -1, -2, 4, 0], [0, -1, -1, -1, 0, 3]]]]], ['t01268', [10, 7, 3, 3, 2], [[172, [[2, -1, 0, 0, -1], [-1, 3, 0, 0, 0], [0, 0, 4, -2, -2], [0, 0, -2, 5, -2], [-1, 0, -2, -2, 6]]], [173, [[2, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, -1], [0, -1, 3, 0, 0, 0], [-1, 0, 0, 4, -1, -2], [0, 0, 0, -1, 3, -2], [0, -1, 0, -2, -2, 6]]]]], ['t01292', [10, 6, 4, 3], [[163, [[2, 0, 0, -1, 0], [0, 3, 0, 0, -1], [0, 0, 4, -3, -1], [-1, 0, -3, 6, -2], [0, -1, -1, -2, 5]]], [164, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, -1, 0, 0], [0, 0, 3, 0, 0, -1], [0, -1, 0, 4, -2, -1], [0, 0, 0, -2, 4, -2], [0, 0, -1, -1, -2, 5]]]]], ['t01318', [9, 4, 3, 2, 2], [[115, [[2, 0, -1, 0, 0], [0, 6, -1, -1, -1], [-1, -1, 3, -1, 0], [0, -1, -1, 4, -2], [0, -1, 0, -2, 3]]], [116, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, -1, 0], [0, -1, 4, 0, 0, 0], [0, 0, 0, 3, -1, -1], [-1, -1, 0, -1, 3, 0], [-1, 0, 0, -1, 0, 3]]]]], ['t01368', [9, 5, 4, 2], [[127, [[3, 0, -1, 0], [0, 3, -1, -1], [-1, -1, 6, -2], [0, -1, -2, 4]]], [128, [[2, 0, -1, 0, -1], [0, 3, 0, 0, -1], [-1, 0, 3, -1, -1], [0, 0, -1, 3, -1], [-1, -1, -1, -1, 6]]]]], ['t01409', [9, 9, 4, 3, 2], [[192, [[2, 0, 0, 0, -1], [0, 5, -2, -1, -1], [0, -2, 3, 0, -1], [0, -1, 0, 3, -2], [-1, -1, -1, -2, 7]]], [193, [[2, 0, 0, 0, -1, -1], [0, 2, 0, 0, 0, -1], [0, 0, 4, -1, -2, -1], [0, 0, -1, 3, 0, -1], [-1, 0, -2, 0, 3, 0], [-1, -1, -1, -1, 0, 6]]]]], ['t01422', [4, 4, 4, 4, 3, 2, 2], [[82, [[2, 0, 0, 0, -1, -1, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 3, -1, 0], [-1, 0, 0, 0, -1, 5, -2], [0, 0, 0, -1, 0, -2, 3]]], [83, [[2, 0, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 0, 3, 0, 0], [0, -1, 0, 0, 0, 0, 3, -1], [-1, 0, 0, 0, -1, 0, -1, 3]]]]], ['t01424', [9, 9, 5, 4, 2, 2], [[212, [[2, 0, 0, -1, -1, 0], [0, 2, 0, 0, 0, -1], [0, 0, 4, -1, -1, -1], [-1, 0, -1, 5, -2, 0], [-1, 0, -1, -2, 4, 0], [0, -1, -1, 0, 0, 3]]], [213, [[2, 0, 0, -1, 0, -1, 0], [0, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, 0, 0, -1], [-1, 0, 0, 4, 0, -1, -1], [0, -1, 0, 0, 3, -1, 0], [-1, 0, 0, -1, -1, 3, 0], [0, 0, -1, -1, 0, 0, 3]]]]], ['t01440', [4, 4, 4, 4, 4, 3, 2], [[94, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, 0, 0, 0, 3, -1, 0], [0, 0, 0, 0, -1, 5, -2], [0, 0, 0, -1, 0, -2, 3]]], [95, [[2, 0, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 0, 3, -2], [-1, 0, 0, 0, -1, 0, -2, 4]]]]], ['t01598', [11, 5, 4, 2, 2], [[171, [[2, 0, -1, 0, 0], [0, 6, -2, 0, -1], [-1, -2, 6, -2, -1], [0, 0, -2, 3, -1], [0, -1, -1, -1, 3]]], [172, [[2, 0, -1, 0, 0, -1], [0, 2, 0, -1, 0, 0], [-1, 0, 6, -1, 0, -1], [0, -1, -1, 4, -2, 0], [0, 0, 0, -2, 3, -1], [-1, 0, -1, 0, -1, 3]]]]], ['t01636', [11, 4, 4, 3, 2], [[167, [[2, 0, -1, 0, -1], [0, 4, 0, 0, -1], [-1, 0, 3, -2, 0], [0, 0, -2, 5, -2], [-1, -1, 0, -2, 5]]], [168, [[2, 0, 0, -1, 0, 0], [0, 2, 0, -1, 0, -1], [0, 0, 4, 0, 0, -1], [-1, -1, 0, 3, -1, 0], [0, 0, 0, -1, 3, -2], [0, -1, -1, 0, -2, 5]]]]], ['t01646', [11, 6, 5, 2, 2], [[191, [[2, 0, 0, -1, -1], [0, 3, 0, 0, -1], [0, 0, 3, -2, -1], [-1, 0, -2, 5, -1], [-1, -1, -1, -1, 6]]], [192, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, -1], [0, 0, 3, 0, 0, -1], [-1, 0, 0, 3, -1, -1], [0, -1, 0, -1, 3, -1], [0, -1, -1, -1, -1, 6]]]]], ['t01690', [11, 7, 4, 2, 2], [[195, [[2, 0, 0, -1, -1], [0, 7, -1, -2, -2], [0, -1, 3, -1, 0], [-1, -2, -1, 5, -1], [-1, -2, 0, -1, 4]]], [196, [[2, 0, -1, 0, 0, -1], [0, 2, 0, 0, -1, -1], [-1, 0, 7, -1, -1, -2], [0, 0, -1, 3, -1, 0], [0, -1, -1, -1, 3, 0], [-1, -1, -2, 0, 0, 4]]]]], ['t01757', [7, 7, 2, 2, 2, 2], [[115, [[2, -1, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [0, 0, -1, 0, 5, -3], [0, 0, 0, -1, -3, 6]]], [116, [[2, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, -1, 0], [0, 0, 0, 0, 2, 0, -1], [0, 0, 0, -1, 0, 3, -2], [-1, 0, 0, 0, -1, -2, 6]]]]], ['t01834', [7, 7, 5, 2], [[129, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 7, -2, -4], [0, 0, -2, 3, 0], [-1, -1, -4, 0, 7]]], [130, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1], [0, 0, 0, 5, -1, -4], [-1, 0, 0, -1, 3, 0], [0, -1, -1, -4, 0, 7]]]]], ['t01850', [8, 5, 4], [[108, [[2, -1, -1, 0, 0], [-1, 2, 0, 0, -1], [-1, 0, 4, -2, 0], [0, 0, -2, 8, -2], [0, -1, 0, -2, 3]]], [109, [[2, -1, 0, -1, 0, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, 0], [-1, 0, 0, 4, -2, -1], [0, 0, 0, -2, 5, -3], [0, 0, 0, -1, -3, 6]]]]], ['t01863', [10, 3, 3, 3, 2], [[132, [[2, -1, 0, 0, -1], [-1, 2, 0, -1, 0], [0, 0, 6, -2, -1], [0, -1, -2, 6, -1], [-1, 0, -1, -1, 3]]], [133, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, 0, 0, 0], [-1, 0, 0, 6, -2, 0], [0, 0, 0, -2, 3, 0], [-1, -1, 0, 0, 0, 3]]]]], ['t01949', [8, 7, 2, 2, 2], [[126, [[2, -1, 0, -1, 0], [-1, 2, -1, 0, 0], [0, -1, 4, -1, -1], [-1, 0, -1, 8, -4], [0, 0, -1, -4, 5]]], [127, [[2, 0, 0, -1, 0, 0], [0, 2, -1, 0, -1, 0], [0, -1, 2, -1, 0, 0], [-1, 0, -1, 4, -1, -1], [0, -1, 0, -1, 3, -1], [0, 0, 0, -1, -1, 6]]]]], ['t02099', [5, 5, 5, 4, 2], [[96, [[2, -1, 0, 0, 0], [-1, 2, 0, 0, -1], [0, 0, 6, -3, -2], [0, 0, -3, 5, -1], [0, -1, -2, -1, 4]]], [97, [[2, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 4, -1, 0], [0, 0, 0, -1, 3, -1], [-1, 0, -1, 0, -1, 3]]]]], ['t02104', [9, 4, 4, 2], [[118, [[2, 0, -1, -1], [0, 5, -1, -2], [-1, -1, 5, -2], [-1, -2, -2, 6]]], [119, [[2, 0, -1, 0, 0], [0, 2, 0, -1, -1], [-1, 0, 5, -1, -1], [0, -1, -1, 5, -2], [0, -1, -1, -2, 4]]]]], ['t02238', [8, 8, 3, 3], [[148, [[2, 0, 0, -1, -1], [0, 2, 0, -1, -1], [0, 0, 2, 0, -1], [-1, -1, 0, 6, -2], [-1, -1, -1, -2, 7]]], [149, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, 0, -1, -1], [0, 0, 0, 2, 0, -1], [0, 0, -1, 0, 4, -2], [0, -1, -1, -1, -2, 7]]]]], ['t02378', [11, 4, 4, 2, 2], [[162, [[2, 0, 0, -1, 0], [0, 2, -1, 0, -1], [0, -1, 7, -2, -1], [-1, 0, -2, 5, -1], [0, -1, -1, -1, 3]]], [163, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, -1], [-1, 0, -1, 7, -1, -1], [0, -1, 0, -1, 3, -1], [0, 0, -1, -1, -1, 3]]]]], ['t02398', [8, 8, 5, 3, 2, 2], [[171, [[2, 0, 0, -1, -1, 0], [0, 2, 0, 0, 0, -1], [0, 0, 4, -1, -2, -1], [-1, 0, -1, 5, 0, 0], [-1, 0, -2, 0, 3, 0], [0, -1, -1, 0, 0, 3]]], [172, [[2, 0, 0, -1, 0, 0, 0], [0, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, 0, 0, -1], [-1, 0, 0, 4, 0, -2, -1], [0, -1, 0, 0, 3, -2, 0], [0, 0, 0, -2, -2, 4, 0], [0, 0, -1, -1, 0, 0, 3]]]]], ['t02404', [9, 5, 3, 2, 2], [[124, [[2, 0, 0, -1, -1], [0, 6, -1, -1, -2], [0, -1, 4, -1, 0], [-1, -1, -1, 3, 0], [-1, -2, 0, 0, 3]]], [125, [[2, 0, -1, 0, -1, 0], [0, 2, 0, 0, -1, -1], [-1, 0, 4, -1, 0, 0], [0, 0, -1, 4, 0, -2], [-1, -1, 0, 0, 3, 0], [0, -1, 0, -2, 0, 3]]]]], ['t02470', [10, 7, 3, 2, 2], [[167, [[2, 0, -1, -1, 0], [0, 7, 0, -2, -3], [-1, 0, 3, -1, 0], [-1, -2, -1, 5, -1], [0, -3, 0, -1, 4]]], [168, [[2, 0, -1, -1, 0, 0], [0, 2, 0, -1, -1, 0], [-1, 0, 7, 0, -1, -3], [-1, -1, 0, 3, 0, 0], [0, -1, -1, 0, 3, -1], [0, 0, -3, 0, -1, 4]]]]], ['t02537', [7, 7, 7, 3, 3, 2], [[170, [[2, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 3, -1, 0], [0, 0, 0, -1, 5, -2], [0, 0, -1, 0, -2, 4]]], [171, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 3, -2], [-1, 0, 0, -1, 0, -2, 5]]]]], ['t02567', [7, 7, 7, 4, 2, 2], [[172, [[2, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 6, -2, -2], [0, 0, 0, -2, 3, -1], [0, 0, -1, -2, -1, 5]]], [173, [[2, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 4, -2, -1], [0, 0, 0, 0, -2, 3, -1], [-1, 0, 0, -1, -1, -1, 5]]]]], ['t02639', [11, 7, 4, 3, 2], [[200, [[3, 0, 0, -1, 0], [0, 4, -1, -1, -2], [0, -1, 5, -2, 0], [-1, -1, -2, 5, -1], [0, -2, 0, -1, 3]]], [201, [[2, 0, -1, 0, 0, 0], [0, 3, 0, 0, -1, 0], [-1, 0, 4, 0, -1, -2], [0, 0, 0, 3, -1, 0], [0, -1, -1, -1, 4, -1], [0, 0, -2, 0, -1, 3]]]]], ['t03566', [7, 7, 3], [[110, [[2, -1, 0, 0, -1], [-1, 2, 0, 0, 0], [0, 0, 2, 0, -1], [0, 0, 0, 4, -1], [-1, 0, -1, -1, 6]]], [111, [[2, -1, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [0, 0, -1, 0, 4, -1], [-1, 0, 0, -1, -1, 6]]]]], ['t03607', [10, 4, 4, 3], [[143, [[2, 0, -1, 0, -1], [0, 2, 0, -1, -1], [-1, 0, 5, -2, 0], [0, -1, -2, 7, -1], [-1, -1, 0, -1, 3]]], [144, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 5, -2, 0], [0, 0, 0, -2, 4, 0], [0, -1, -1, 0, 0, 3]]]]], ['t03709', [7, 7, 4, 3, 3], [[134, [[2, 0, 0, -1, 0, 0], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, -1, 0], [0, 0, 0, -1, 5, 0], [0, -1, -1, 0, 0, 3]]], [135, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, -1, -1, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, -1, 0, 3, 0, 0], [0, 0, -1, 0, 0, 4, -3], [0, 0, 0, -1, 0, -3, 5]]]]], ['t03713', [7, 7, 3, 2], [[112, [[2, 0, 0, -1], [0, 3, -1, -1], [0, -1, 5, -2], [-1, -1, -2, 6]]], [113, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 3, 0, -1], [0, 0, 0, 3, -2], [-1, -1, -1, -2, 7]]]]], ['t03781', [4, 4, 4, 4, 3, 3], [[84, [[2, 0, 0, 0, 0, -1, 0], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [-1, -1, 0, 0, 0, 6, -4], [0, 0, 0, 0, -1, -4, 5]]], [85, [[2, -1, 0, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 0, 4, -3], [-1, 0, 0, 0, 0, -1, -3, 5]]]]], ['t03864', [7, 7, 4, 3, 2, 2], [[132, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1], [0, 0, 3, -1, -1, -1], [-1, 0, -1, 5, -2, 0], [0, 0, -1, -2, 3, 0], [0, -1, -1, 0, 0, 3]]], [133, [[2, 0, 0, 0, 0, -1, 0], [0, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, 0, 0, -1], [0, 0, 0, 3, -1, -1, -1], [0, -1, 0, -1, 3, -1, 0], [-1, 0, 0, -1, -1, 3, 0], [0, 0, -1, -1, 0, 0, 3]]]]], ['t03956', [7, 6, 2, 2], [[94, [[2, -1, -1, 0], [-1, 4, 0, -2], [-1, 0, 6, -4], [0, -2, -4, 7]]], [95, [[2, 0, -1, 0, 0], [0, 2, -1, -1, 0], [-1, -1, 4, 0, -1], [0, -1, 0, 6, -4], [0, 0, -1, -4, 5]]]]], ['t03979', [8, 6, 3, 2], [[114, [[5, 0, -1, -3], [0, 4, -1, -3], [-1, -1, 3, 0], [-3, -3, 0, 7]]], [115, [[2, -1, 0, 0, -1], [-1, 4, -1, -1, 0], [0, -1, 5, 0, -3], [0, -1, 0, 3, 0], [-1, 0, -3, 0, 4]]]]], ['t04003', [7, 7, 4, 2], [[119, [[2, 0, 0, -1], [0, 5, -2, -2], [0, -2, 5, -2], [-1, -2, -2, 6]]], [120, [[2, 0, 0, 0, -1], [0, 2, 0, 0, -1], [0, 0, 4, -1, -2], [0, 0, -1, 3, -2], [-1, -1, -2, -2, 7]]]]], ['t04019', [5, 5, 4, 4], [[85, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [-1, 0, -1, 0, 7, -5], [0, 0, 0, -1, -5, 6]]], [86, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, 0], [0, 0, 0, 2, 0, -1, 0], [0, 0, 0, 0, 2, 0, -1], [0, 0, 0, -1, 0, 5, -4], [-1, 0, 0, 0, -1, -4, 6]]]]], ['t04102', [7, 7, 3, 3, 2, 2], [[125, [[2, 0, 0, -1, -1, 0], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, -1, 0], [-1, 0, 0, -1, 5, -2], [0, 0, -1, 0, -2, 4]]], [126, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [-1, -1, -1, 0, 3, 0, 0], [0, -1, 0, 0, 0, 3, -1], [-1, 0, 0, -1, 0, -1, 4]]]]], ['t04180', [5, 5, 5, 5, 4, 2, 2], [[125, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 6, -2, -2], [0, 0, 0, 0, -2, 3, 0], [-1, 0, 0, -1, -2, 0, 4]]], [126, [[2, 0, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 0, 4, -1, 0], [0, -1, 0, 0, 0, -1, 3, -1], [-1, 0, 0, 0, -1, 0, -1, 3]]]]], ['t04228', [9, 7, 3, 3], [[150, [[2, 0, -1, 0, -1], [0, 2, -1, -1, 0], [-1, -1, 4, -1, 0], [0, -1, -1, 8, -3], [-1, 0, 0, -3, 4]]], [151, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 2, -1, -1, 0], [-1, 0, -1, 4, -1, -1], [0, 0, -1, -1, 4, -2], [0, 0, 0, -1, -2, 6]]]]], ['t04244', [11, 5, 5, 2, 2], [[180, [[2, 0, -1, -1, 0], [0, 2, 0, -1, -1], [-1, 0, 5, -1, -1], [-1, -1, -1, 7, -2], [0, -1, -1, -2, 4]]], [181, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 5, -1, 0], [0, -1, 0, -1, 3, 0], [-1, 0, -1, 0, 0, 4]]]]], ['t04382', [10, 6, 3, 3], [[156, [[2, 0, 0, -1, 0], [0, 2, 0, -1, 0], [0, 0, 7, -3, -2], [-1, -1, -3, 6, -1], [0, 0, -2, -1, 3]]], [157, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, -1, 0], [0, -1, 0, 7, -2, -2], [0, 0, -1, -2, 4, -1], [0, 0, 0, -2, -1, 3]]]]], ['t04721', [7, 7, 6, 2, 2, 2], [[147, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 7, -3, -2], [0, 0, 0, -3, 4, 0], [-1, 0, -1, -2, 0, 4]]], [148, [[2, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, -1, 0], [0, -1, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [0, 0, -1, 0, 5, -1, 0], [0, -1, 0, 0, -1, 3, -1], [-1, 0, 0, -1, 0, -1, 3]]]]], ['t05118', [11, 6, 4, 2, 2], [[182, [[2, 0, 0, -1, -1], [0, 6, 0, -2, -2], [0, 0, 3, -2, 0], [-1, -2, -2, 6, 0], [-1, -2, 0, 0, 3]]], [183, [[2, 0, -1, 0, 0, 0], [0, 2, 0, 0, -1, -1], [-1, 0, 6, 0, -1, -2], [0, 0, 0, 3, -2, 0], [0, -1, -1, -2, 4, 0], [0, -1, -2, 0, 0, 3]]]]], ['t05239', [11, 5, 3, 3], [[166, [[2, 0, -1, -1, 0], [0, 2, 0, -1, -1], [-1, 0, 6, -1, -1], [-1, -1, -1, 6, -2], [0, -1, -1, -2, 4]]], [167, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, -1, -1], [0, -1, 0, 6, -1, -1], [0, 0, -1, -1, 4, -1], [-1, 0, -1, -1, -1, 4]]]]], ['t05390', [6, 6, 5, 2, 2, 2], [[110, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, 0], [-1, 0, 0, -1, 5, -2], [0, 0, -1, 0, -2, 3]]], [111, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, -1, 0], [0, -1, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, -1, 0, 4, 0, 0], [0, -1, 0, 0, 0, 3, -1], [-1, 0, 0, -1, 0, -1, 3]]]]], ['t05425', [6, 6, 5, 3, 3], [[117, [[2, 0, 0, 0, -1, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -2, 0], [-1, -1, 0, -2, 6, -1], [-1, 0, -1, 0, -1, 3]]], [118, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, -1, -1, 0], [0, 0, 0, 2, 0, 0, -1], [0, -1, -1, 0, 4, -1, 0], [0, 0, -1, 0, -1, 4, -1], [-1, 0, 0, -1, 0, -1, 3]]]]], ['t05426', [11, 6, 5, 3, 2], [[196, [[3, 0, 0, -1, 0], [0, 3, -1, 0, -1], [0, -1, 3, -2, 0], [-1, 0, -2, 7, -3], [0, -1, 0, -3, 4]]], [197, [[2, 0, -1, 0, -1, 0], [0, 3, 0, 0, 0, -1], [-1, 0, 3, -1, 0, -1], [0, 0, -1, 3, 0, 0], [-1, 0, 0, 0, 3, -2], [0, -1, -1, 0, -2, 5]]]]], ['t05538', [5, 5, 5, 4, 3, 2], [[105, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 5, -2, -1, -1], [0, 0, -2, 3, 0, -1], [0, 0, -1, 0, 3, 0], [0, -1, -1, -1, 0, 3]]], [106, [[2, 0, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 4, -1, -2, 0], [0, 0, 0, -1, 3, 0, -1], [-1, 0, 0, -2, 0, 3, 0], [-1, 0, -1, 0, -1, 0, 3]]]]], ['t05564', [6, 6, 6, 4, 3], [[135, [[2, 0, 0, -1, -1, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 3, 0, 0], [-1, 0, 0, 0, 6, -3], [0, 0, -1, 0, -3, 4]]], [136, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 4, -2], [0, -1, 0, -1, 0, -2, 4]]]]], ['t05578', [9, 8, 3, 3, 2], [[168, [[2, -1, 0, -1, 0], [-1, 4, 0, -1, -1], [0, 0, 7, -1, -3], [-1, -1, -1, 3, 0], [0, -1, -3, 0, 4]]], [169, [[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, -1, 0], [0, -1, 5, 0, -1, -2], [0, 0, 0, 4, 0, -3], [-1, -1, -1, 0, 3, 0], [0, 0, -2, -3, 0, 5]]]]], ['t05658', [7, 6, 4, 3], [[112, [[2, 0, 0, -1, -1], [0, 4, 0, -2, -1], [0, 0, 4, 0, -1], [-1, -2, 0, 3, 0], [-1, -1, -1, 0, 4]]], [113, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, -1, 0], [0, 0, 4, -1, -2, -1], [0, 0, -1, 4, 0, -1], [0, -1, -2, 0, 3, 0], [0, 0, -1, -1, 0, 3]]]]], ['t05663', [8, 7, 4, 3], [[140, [[2, 0, -1, -1, 0], [0, 4, 0, -2, -1], [-1, 0, 7, 0, -2], [-1, -2, 0, 3, 0], [0, -1, -2, 0, 3]]], [141, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, -1, 0], [0, 0, 6, 0, -2, -3], [0, 0, 0, 3, 0, -2], [0, -1, -2, 0, 3, 0], [0, 0, -3, -2, 0, 5]]]]], ['t05674', [6, 6, 6, 5, 2, 2], [[142, [[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 4, -1, 0], [-1, 0, 0, -1, 5, -2], [0, 0, -1, 0, -2, 3]]], [143, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1, -1], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 4, 0, 0], [0, -1, 0, 0, 0, 3, -1], [-1, -1, 0, -1, 0, -1, 4]]]]], ['t05695', [5, 5, 5, 5, 3, 3], [[120, [[2, 0, 0, 0, 0, -1, -1], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [-1, -1, 0, 0, 0, 6, -2], [-1, 0, 0, 0, -1, -2, 4]]], [121, [[2, -1, 0, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, 0, -1], [0, 0, 2, 0, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 0, 4, -2], [0, -1, 0, 0, 0, -1, -2, 4]]]]], ['t06001', [7, 7, 4, 4], [[133, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [-1, 0, -1, 0, 7, -2], [0, -1, 0, -1, -2, 4]]], [134, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 2, 0, -1, 0], [0, 0, 0, 0, 2, 0, -1], [0, 0, 0, -1, 0, 5, -2], [0, 0, -1, 0, -1, -2, 4]]]]], ['t06440', [8, 8, 3, 3, 3], [[157, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [-1, 0, -1, 0, 6, -2], [-1, 0, 0, -1, -2, 5]]], [158, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, -1, 0], [0, 0, 0, 0, 2, 0, -1], [0, 0, 0, -1, 0, 4, -2], [0, -1, 0, 0, -1, -2, 5]]]]], ['t06463', [9, 9, 5, 3, 2], [[201, [[2, 0, 0, 0, -1], [0, 6, -1, -2, -1], [0, -1, 3, 0, -2], [0, -2, 0, 3, -1], [-1, -1, -2, -1, 6]]], [202, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1], [0, 0, 4, 0, -2, -1], [-1, 0, 0, 3, 0, 0], [0, 0, -2, 0, 3, -1], [-1, -1, -1, 0, -1, 5]]]]], ['t06525', [7, 7, 5, 3, 2], [[137, [[2, 0, 0, 0, -1], [0, 6, -1, -2, -1], [0, -1, 3, 0, -1], [0, -2, 0, 3, 0], [-1, -1, -1, 0, 3]]], [138, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1], [0, 0, 4, 0, -2, -1], [-1, 0, 0, 3, 0, -1], [0, 0, -2, 0, 3, 0], [-1, -1, -1, -1, 0, 4]]]]], ['t06570', [8, 8, 5, 2, 2], [[162, [[2, 0, 0, -1, -1], [0, 2, 0, 0, -1], [0, 0, 4, -1, -3], [-1, 0, -1, 5, 0], [-1, -1, -3, 0, 6]]], [163, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, 0], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 4, 0, -3], [0, -1, 0, 0, 3, -2], [0, 0, -1, -3, -2, 7]]]]], ['t06605', [9, 9, 4, 4, 2, 2], [[203, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 6, -1, -2], [0, -1, 0, -1, 3, 0], [-1, 0, -1, -2, 0, 5]]], [204, [[2, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [0, -1, -1, 0, 4, -1, 0], [0, -1, 0, 0, -1, 3, -1], [-1, 0, 0, -1, 0, -1, 4]]]]], ['t07348', [6, 5, 4, 2, 2], [[86, [[2, -1, -1, 0, 0], [-1, 5, 0, -2, -1], [-1, 0, 4, 0, -1], [0, -2, 0, 3, -1], [0, -1, -1, -1, 3]]], [87, [[2, 0, -1, 0, 0, 0], [0, 2, 0, -1, 0, -1], [-1, 0, 3, -1, 0, -1], [0, -1, -1, 4, -2, 0], [0, 0, 0, -2, 3, 0], [0, -1, -1, 0, 0, 3]]]]], ['t08111', [5, 5, 3, 3, 2], [[73, [[2, 0, -1, 0, 0], [0, 2, 0, 0, -1], [-1, 0, 3, -1, -1], [0, 0, -1, 5, -3], [0, -1, -1, -3, 5]]], [74, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, -1], [0, 0, 0, 0, 3, -1], [-1, 0, -1, -1, -1, 4]]]]], ['t08201', [7, 4, 4, 2], [[86, [[2, 0, 0, -1], [0, 4, -2, -1], [0, -2, 5, -2], [-1, -1, -2, 5]]], [87, [[2, 0, -1, 0, 0], [0, 2, 0, 0, -1], [-1, 0, 4, -1, -1], [0, 0, -1, 3, -2], [0, -1, -1, -2, 5]]]]], ['t08267', [8, 7, 3, 3, 2], [[136, [[2, -1, 0, -1, 0], [-1, 4, 0, -1, -1], [0, 0, 4, 0, -2], [-1, -1, 0, 3, -1], [0, -1, -2, -1, 5]]], [137, [[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, -1, 0], [0, -1, 4, -1, -1, -1], [0, 0, -1, 3, 0, -1], [-1, -1, -1, 0, 3, 0], [0, 0, -1, -1, 0, 4]]]]], ['t08403', [9, 4, 2, 2], [[106, [[2, -1, -1, 0], [-1, 7, -2, -1], [-1, -2, 5, -1], [0, -1, -1, 3]]], [107, [[2, 0, -1, 0, 0], [0, 2, -1, -1, 0], [-1, -1, 7, -1, -1], [0, -1, -1, 3, -1], [0, 0, -1, -1, 3]]]]], ['t09016', [9, 5, 4, 3, 2], [[136, [[3, 0, 0, 0, -1], [0, 3, -1, -1, -1], [0, -1, 6, -2, -1], [0, -1, -2, 3, 0], [-1, -1, -1, 0, 3]]], [137, [[2, 0, -1, 0, -1, 0], [0, 3, 0, 0, 0, -1], [-1, 0, 3, -1, 0, -1], [0, 0, -1, 3, 0, -1], [-1, 0, 0, 0, 3, 0], [0, -1, -1, -1, 0, 3]]]]], ['t09267', [7, 7, 4], [[117, [[2, -1, 0, -1, 0], [-1, 2, 0, 0, -1], [0, 0, 2, 0, -1], [-1, 0, 0, 7, -3], [0, -1, -1, -3, 6]]], [118, [[2, -1, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 2, 0, -1], [0, 0, 0, 0, 5, -3], [0, 0, -1, -1, -3, 6]]]]], ['t09313', [7, 7, 6, 3, 3], [[154, [[2, 0, 0, -1, 0, 0], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 7, -2, -3], [0, 0, 0, -2, 3, 0], [0, -1, -1, -3, 0, 5]]], [155, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, -1, -1, 0], [0, 0, 0, 2, 0, 0, -1], [0, 0, -1, 0, 5, -2, 0], [0, 0, -1, 0, -2, 4, -1], [-1, 0, 0, -1, 0, -1, 3]]]]], ['t09455', [7, 7, 3, 3, 3], [[127, [[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [-1, 0, -1, 0, 6, -4], [0, 0, 0, -1, -4, 6]]], [128, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, -1, 0], [0, 0, 0, 0, 2, 0, -1], [0, 0, 0, -1, 0, 4, -3], [-1, 0, 0, 0, -1, -3, 6]]]]], ['t09580', [9, 5, 2, 2], [[115, [[2, -1, -1, 0], [-1, 7, -2, -2], [-1, -2, 5, -1], [0, -2, -1, 4]]], [116, [[2, 0, -1, 0, -1], [0, 2, 0, -1, 0], [-1, 0, 6, -1, -2], [0, -1, -1, 3, 0], [-1, 0, -2, 0, 4]]]]], ['t09704', [8, 8, 6, 3, 3], [[184, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 7, -2, -1], [0, 0, 0, -2, 3, 0], [-1, -1, -1, -1, 0, 4]]], [185, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 2, 0, 0, -1], [0, 0, -1, 0, 5, -2, -1], [0, 0, 0, 0, -2, 3, 0], [0, -1, -1, -1, -1, 0, 4]]]]], ['t09852', [6, 5, 3], [[72, [[2, 0, -1, 0], [0, 5, -2, -2], [-1, -2, 6, -2], [0, -2, -2, 4]]], [73, [[2, -1, 0, 0, 0], [-1, 2, -1, 0, 0], [0, -1, 3, -1, -1], [0, 0, -1, 4, -2], [0, 0, -1, -2, 5]]]]], ['t09954', [6, 5, 4, 2], [[82, [[5, 0, -3, -1], [0, 4, -1, -1], [-3, -1, 5, -1], [-1, -1, -1, 3]]], [83, [[2, -1, 0, 0, 0], [-1, 5, 0, -3, -1], [0, 0, 3, -1, -1], [0, -3, -1, 4, 0], [0, -1, -1, 0, 3]]]]], ['t10188', [5, 4, 3, 2, 2], [[59, [[2, -1, 0, -1, 0], [-1, 4, 0, 0, -2], [0, 0, 3, -1, -1], [-1, 0, -1, 3, 0], [0, -2, -1, 0, 3]]]]], ['t10230', [6, 4, 3, 3], [[72, [[2, 0, -1, 0, -1], [0, 2, -1, 0, -1], [-1, -1, 4, -1, 0], [0, 0, -1, 5, -1], [-1, -1, 0, -1, 3]]], [73, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 2, 0, -1, 0], [-1, 0, 0, 4, -2, -1], [0, 0, -1, -2, 4, -1], [0, 0, 0, -1, -1, 3]]]]], ['t10462', [9, 4, 4, 3, 2], [[127, [[2, 0, -1, 0, -1], [0, 5, 0, -2, -1], [-1, 0, 3, 0, 0], [0, -2, 0, 3, -1], [-1, -1, 0, -1, 4]]], [128, [[2, 0, 0, 0, -1, -1], [0, 2, 0, 0, 0, -1], [0, 0, 5, -1, -2, 0], [0, 0, -1, 3, 0, -1], [-1, 0, -2, 0, 3, 0], [-1, -1, 0, -1, 0, 3]]]]], ['t10643', [6, 6, 6, 5, 3, 2], [[147, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 6, -1, -2, -3], [0, 0, -1, 3, 0, 0], [0, 0, -2, 0, 3, 0], [0, -1, -3, 0, 0, 4]]], [148, [[2, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 4, 0, -2, 0], [-1, 0, 0, 0, 3, 0, -2], [0, 0, 0, -2, 0, 3, -1], [0, 0, -1, 0, -2, -1, 4]]]]], ['t10681', [11, 5, 5, 3, 2], [[185, [[2, 0, -1, 0, -1], [0, 5, 0, -2, -1], [-1, 0, 6, -1, -1], [0, -2, -1, 3, 0], [-1, -1, -1, 0, 3]]], [186, [[2, 0, 0, 0, -1, 0], [0, 2, 0, -1, 0, -1], [0, 0, 6, 0, -2, -2], [0, -1, 0, 3, 0, -1], [-1, 0, -2, 0, 3, 0], [0, -1, -2, -1, 0, 4]]]]], ['t10985', [11, 6, 3, 3], [[177, [[2, 0, -1, -1, 0], [0, 2, 0, -1, 0], [-1, 0, 6, -1, -2], [-1, -1, -1, 6, -1], [0, 0, -2, -1, 3]]], [178, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 2, 0, -1, 0], [-1, 0, 0, 6, -1, -2], [0, 0, -1, -1, 4, -1], [0, 0, 0, -2, -1, 3]]]]], ['t11556', [6, 4, 3, 2], [[66, [[5, -1, -1, -2], [-1, 3, 0, -1], [-1, 0, 3, -1], [-2, -1, -1, 4]]]]], ['t11852', [6, 5, 3, 3, 2], [[84, [[2, 0, -1, -1, 0], [0, 4, 0, 0, -3], [-1, 0, 3, 0, -1], [-1, 0, 0, 3, -1], [0, -3, -1, -1, 5]]], [85, [[2, 0, -1, -1, 0, 0], [0, 2, 0, -1, 0, 0], [-1, 0, 4, 0, -2, -1], [-1, -1, 0, 3, 0, -1], [0, 0, -2, 0, 3, 0], [0, 0, -1, -1, 0, 3]]]]], ['t12753', [7, 5, 3, 3], [[94, [[2, 0, -1, -1, 0], [0, 2, -1, 0, -1], [-1, -1, 4, 0, -1], [-1, 0, 0, 4, -1], [0, -1, -1, -1, 4]]]]], ['v0082', [5, 5, 5, 2], [[81, [[2, 0, 0, 0, -1], [0, 2, -1, 0, 0], [0, -1, 2, 0, -1], [0, 0, 0, 3, -1], [-1, 0, -1, -1, 6]]], [82, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 3, -1], [-1, 0, 0, -1, -1, 6]]]]], ['v0114', [5, 5, 5, 3, 2, 2], [[93, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 3, -1, 0], [0, 0, 0, -1, 4, 0], [-1, 0, -1, 0, 0, 3]]], [94, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 3, 0, 0], [0, -1, 0, 0, 0, 3, -2], [0, 0, 0, -1, 0, -2, 4]]]]], ['v0165', [3, 3, 3, 3, 3, 2, 2], [[54, [[2, 0, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [-1, 0, 0, 0, 0, 5, -3], [0, 0, 0, 0, -1, -3, 4]]], [55, [[2, 0, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 0, 0, 3, -2], [-1, 0, 0, 0, 0, -1, -2, 4]]]]], ['v0220', [7, 7, 3, 2, 2], [[116, [[2, 0, -1, -1, 0], [0, 2, 0, 0, -1], [-1, 0, 3, -1, -1], [-1, 0, -1, 5, -2], [0, -1, -1, -2, 6]]], [117, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, -1], [0, -1, 0, 0, 3, -1], [-1, 0, -1, -1, -1, 6]]]]], ['v0223', [7, 7, 4, 3, 2], [[128, [[2, 0, 0, 0, -1], [0, 5, -2, -1, -1], [0, -2, 5, -2, 0], [0, -1, -2, 3, 0], [-1, -1, 0, 0, 3]]], [129, [[2, 0, 0, 0, -1, 0], [0, 2, 0, 0, 0, -1], [0, 0, 4, -1, -1, -1], [0, 0, -1, 3, -2, 0], [-1, 0, -1, -2, 4, 0], [0, -1, -1, 0, 0, 3]]]]], ['v0330', [7, 2, 2], [[59, [[2, 0, -1, 0], [0, 2, -1, -1], [-1, -1, 7, 0], [0, -1, 0, 3]]], [60, [[2, -1, 0, 0, -1], [-1, 2, 0, -1, 0], [0, 0, 2, -1, -1], [0, -1, -1, 7, 0], [-1, 0, -1, 0, 3]]]]], ['v0398', [7, 5, 2, 2, 2], [[87, [[2, -1, 0, 0, -1], [-1, 2, -1, 0, 0], [0, -1, 3, 0, 0], [0, 0, 0, 5, -2], [-1, 0, 0, -2, 4]]], [88, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [0, 0, -1, 3, 0, 0], [-1, 0, 0, 0, 5, -2], [-1, -1, 0, 0, -2, 4]]]]], ['v0407', [8, 3, 3, 2, 2], [[91, [[2, 0, -1, 0, -1], [0, 2, 0, -1, -1], [-1, 0, 4, 0, 0], [0, -1, 0, 4, 0], [-1, -1, 0, 0, 3]]], [92, [[2, 0, 0, 0, -1, -1], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, -1, -1], [0, -1, 0, 4, 0, 0], [-1, 0, -1, 0, 4, 0], [-1, -1, -1, 0, 0, 3]]]]], ['v0424', [8, 3, 2, 2], [[82, [[2, -1, -1, 0], [-1, 6, 0, -1], [-1, 0, 5, -3], [0, -1, -3, 4]]], [83, [[2, 0, 0, 0, -1], [0, 2, -1, -1, 0], [0, -1, 6, 0, -1], [0, -1, 0, 3, -2], [-1, 0, -1, -2, 4]]]]], ['v0434', [8, 5, 3], [[100, [[2, -1, -1, 0], [-1, 7, -2, -2], [-1, -2, 6, -2], [0, -2, -2, 4]]], [101, [[2, -1, 0, 0, -1], [-1, 2, -1, 0, 0], [0, -1, 7, -2, -2], [0, 0, -2, 4, -1], [-1, 0, -2, -1, 4]]]]], ['v0497', [8, 5, 3, 3], [[109, [[2, 0, 0, -1, 0], [0, 2, -1, 0, -1], [0, -1, 3, 0, 0], [-1, 0, 0, 4, -1], [0, -1, 0, -1, 4]]], [110, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, -1], [0, 0, -1, 3, 0, 0], [0, -1, 0, 0, 4, -1], [-1, 0, -1, 0, -1, 4]]]]], ['v0554', [7, 2, 2, 2, 2], [[66, [[2, -1, 0, 0, -1], [-1, 2, -1, 0, 0], [0, -1, 2, 0, 0], [0, 0, 0, 6, -3], [-1, 0, 0, -3, 5]]], [67, [[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [0, 0, -1, 2, 0, 0], [-1, 0, 0, 0, 6, -2], [0, -1, 0, 0, -2, 3]]]]], ['v0570', [5, 5, 5, 3], [[86, [[2, 0, 0, -1, -1], [0, 2, -1, 0, 0], [0, -1, 2, 0, -1], [-1, 0, 0, 6, -3], [-1, 0, -1, -3, 6]]], [87, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [0, 0, 0, 0, 4, -3], [0, -1, 0, -1, -3, 6]]]]], ['v0573', [5, 5, 5, 2, 2, 2], [[88, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 5, -3], [0, 0, 0, -1, -3, 5]]], [89, [[2, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 3, -2], [-1, 0, 0, 0, -1, -2, 5]]]]], ['v0707', [4, 4, 4, 3, 2, 2], [[66, [[2, 0, 0, -1, -1, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 3, -1, 0], [-1, 0, 0, -1, 5, -2], [0, 0, -1, 0, -2, 3]]], [67, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 3, 0, 0], [0, -1, 0, 0, 0, 3, -1], [-1, 0, 0, -1, 0, -1, 3]]]]], ['v0709', [5, 4, 4], [[60, [[2, -1, 0, 0, 0], [-1, 2, 0, 0, -1], [0, 0, 2, 0, -1], [0, 0, 0, 6, -5], [0, -1, -1, -5, 7]]], [61, [[2, -1, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [0, 0, -1, 0, 6, -4], [0, 0, 0, -1, -4, 5]]]]], ['v0715', [9, 4, 3, 2], [[111, [[7, -1, -2, -1], [-1, 5, -1, -2], [-2, -1, 3, 0], [-1, -2, 0, 3]]], [112, [[2, 0, 0, -1, -1], [0, 7, -1, -2, -1], [0, -1, 3, 0, -1], [-1, -2, 0, 3, 0], [-1, -1, -1, 0, 3]]]]], ['v0740', [4, 4, 4, 4, 3, 2], [[78, [[2, -1, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 3, -1, 0], [0, 0, 0, -1, 5, -2], [0, 0, -1, 0, -2, 3]]], [79, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 3, -2], [-1, 0, 0, -1, 0, -2, 4]]]]], ['v0741', [9, 5, 4, 2, 2], [[131, [[2, 0, 0, -1, -1], [0, 3, 0, -1, 0], [0, 0, 3, -1, -1], [-1, -1, -1, 6, -2], [-1, 0, -1, -2, 4]]], [132, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, 0], [0, 0, 3, 0, 0, -1], [-1, 0, 0, 3, -1, -1], [0, -1, 0, -1, 3, 0], [-1, 0, -1, -1, 0, 4]]]]], ['v0759', [8, 3, 3], [[84, [[2, 0, -1, -1], [0, 2, -1, -1], [-1, -1, 7, -2], [-1, -1, -2, 6]]], [85, [[2, -1, 0, -1, 0], [-1, 2, 0, 0, 0], [0, 0, 2, -1, -1], [-1, 0, -1, 7, -2], [0, 0, -1, -2, 4]]]]], ['v0765', [7, 5, 2], [[80, [[2, -1, 0, -1], [-1, 7, 0, -4], [0, 0, 3, -2], [-1, -4, -2, 7]]], [81, [[2, -1, -1, 0, 0], [-1, 2, 0, -1, 0], [-1, 0, 7, 0, -4], [0, -1, 0, 3, -1], [0, 0, -4, -1, 5]]]]], ['v0847', [7, 4, 4], [[84, [[2, -1, 0, -1, 0], [-1, 2, 0, 0, -1], [0, 0, 2, 0, -1], [-1, 0, 0, 4, -2], [0, -1, -1, -2, 7]]], [85, [[2, -1, 0, 0, -1, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, 0], [0, 0, 0, 2, 0, -1], [-1, 0, 0, 0, 4, -2], [0, 0, 0, -1, -2, 5]]]]], ['v0912', [7, 6, 2, 2, 2], [[98, [[2, -1, 0, 0, -1], [-1, 2, -1, 0, 0], [0, -1, 4, 0, -2], [0, 0, 0, 4, -3], [-1, 0, -2, -3, 7]]], [99, [[2, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [-1, 0, -1, 4, 0, -1], [0, 0, 0, 0, 4, -3], [0, -1, 0, -1, -3, 5]]]]], ['v0939', [5, 5, 4, 2], [[71, [[2, 0, 0, -1], [0, 6, -3, -2], [0, -3, 5, -1], [-1, -2, -1, 4]]], [72, [[2, 0, 0, 0, -1], [0, 2, 0, 0, -1], [0, 0, 4, -1, 0], [0, 0, -1, 3, -1], [-1, -1, 0, -1, 3]]]]], ['v0945', [8, 5, 3, 2, 2], [[107, [[2, 0, 0, -1, -1], [0, 3, 0, -1, 0], [0, 0, 6, -1, -2], [-1, -1, -1, 3, 0], [-1, 0, -2, 0, 3]]], [108, [[2, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, 0], [0, 0, 3, 0, 0, -1], [0, 0, 0, 4, -2, -2], [0, -1, 0, -2, 3, 0], [-1, 0, -1, -2, 0, 4]]]]], ['v1077', [7, 7, 3, 3, 2], [[121, [[2, 0, -1, 0, 0], [0, 2, 0, 0, -1], [-1, 0, 3, -1, 0], [0, 0, -1, 5, -2], [0, -1, 0, -2, 4]]], [122, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, 0], [0, 0, 0, 0, 3, -2], [-1, 0, -1, 0, -2, 5]]]]], ['v1109', [7, 7, 4, 2, 2], [[123, [[2, 0, -1, 0, 0], [0, 2, 0, 0, -1], [-1, 0, 6, -2, -2], [0, 0, -2, 3, -1], [0, -1, -2, -1, 5]]], [124, [[2, 0, 0, 0, 0, -1], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -2, -1], [0, 0, 0, -2, 3, -1], [-1, 0, -1, -1, -1, 5]]]]], ['v1300', [7, 3], [[61, [[2, -1, 0, 0], [-1, 2, -1, 0], [0, -1, 6, -1], [0, 0, -1, 4]]], [62, [[2, -1, 0, 0, -1], [-1, 2, -1, 0, 0], [0, -1, 2, -1, 0], [0, 0, -1, 6, -1], [-1, 0, 0, -1, 4]]]]], ['v1392', [7, 3, 2], [[63, [[6, -2, -1], [-2, 5, -1], [-1, -1, 3]]], [64, [[2, -1, 0, -1], [-1, 7, -2, -1], [0, -2, 3, 0], [-1, -1, 0, 3]]]]], ['v1547', [7, 4, 2], [[70, [[6, -2, -2], [-2, 5, -2], [-2, -2, 5]]], [71, [[2, -1, 0, 0], [-1, 6, -1, -2], [0, -1, 3, -2], [0, -2, -2, 5]]]]], ['v1620', [4, 4, 4, 3, 3], [[68, [[2, 0, 0, 0, -1, 0], [0, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [-1, -1, 0, 0, 6, -4], [0, 0, 0, -1, -4, 5]]], [69, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 4, -3], [-1, 0, 0, 0, -1, -3, 5]]]]], ['v1628', [7, 4, 3, 3], [[85, [[2, 0, 0, 0, -1], [0, 2, -1, 0, -1], [0, -1, 3, 0, 0], [0, 0, 0, 5, -1], [-1, -1, 0, -1, 3]]], [86, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, -1, 0, -1], [0, 0, -1, 3, 0, 0], [-1, 0, 0, 0, 5, -1], [0, -1, -1, 0, -1, 3]]]]], ['v1690', [7, 4, 3, 2, 2], [[83, [[2, 0, 0, -1, 0], [0, 3, 0, 0, -1], [0, 0, 3, -2, -1], [-1, 0, -2, 5, -1], [0, -1, -1, -1, 3]]], [84, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, 0], [0, 0, 3, 0, 0, -1], [-1, 0, 0, 3, -1, -1], [0, -1, 0, -1, 3, -1], [0, 0, -1, -1, -1, 3]]]]], ['v1709', [7, 5, 3, 2], [[88, [[5, -2, -1, -1], [-2, 6, -1, -2], [-1, -1, 3, 0], [-1, -2, 0, 3]]], [89, [[2, -1, 0, -1, 0], [-1, 4, 0, -1, -1], [0, 0, 3, 0, -2], [-1, -1, 0, 3, 0], [0, -1, -2, 0, 4]]]]], ['v1716', [7, 3, 3, 2, 2], [[76, [[2, 0, -1, 0, -1], [0, 2, 0, -1, -1], [-1, 0, 5, -1, -1], [0, -1, -1, 4, 0], [-1, -1, -1, 0, 3]]], [77, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, -1], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 4, -1, 0], [0, -1, 0, -1, 3, 0], [-1, -1, -1, 0, 0, 3]]]]], ['v1718', [8, 3, 3, 3], [[93, [[2, 0, 0, -1, -1], [0, 2, -1, 0, -1], [0, -1, 2, 0, 0], [-1, 0, 0, 5, -2], [-1, -1, 0, -2, 6]]], [94, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 2, -1, 0, -1], [0, 0, -1, 2, 0, 0], [-1, 0, 0, 0, 5, -2], [0, 0, -1, 0, -2, 4]]]]], ['v1728', [6, 5, 2, 2, 2], [[74, [[2, -1, 0, 0, -1], [-1, 2, -1, 0, 0], [0, -1, 4, -1, -1], [0, 0, -1, 5, -2], [-1, 0, -1, -2, 4]]], [75, [[2, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, 0], [-1, 0, 0, 3, -1, -1], [0, 0, -1, -1, 3, -1], [0, 0, 0, -1, -1, 4]]]]], ['v1810', [5, 5, 5, 4, 2, 2], [[100, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 6, -2, -2], [0, 0, 0, -2, 3, 0], [-1, 0, -1, -2, 0, 4]]], [101, [[2, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 4, -1, 0], [0, -1, 0, 0, -1, 3, -1], [-1, 0, 0, -1, 0, -1, 3]]]]], ['v1832', [6, 5, 3, 3], [[81, [[2, 0, 0, -1, 0], [0, 2, -1, 0, -1], [0, -1, 5, -1, -2], [-1, 0, -1, 4, -1], [0, -1, -2, -1, 4]]], [82, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, -1, 0], [0, -1, 0, 3, -1, -1], [0, 0, -1, -1, 4, -1], [0, 0, 0, -1, -1, 3]]]]], ['v1839', [9, 5, 3, 2], [[120, [[6, -1, -1, -2], [-1, 6, -2, -1], [-1, -2, 3, 0], [-2, -1, 0, 3]]], [121, [[2, -1, 0, -1, 0], [-1, 6, -1, 0, -2], [0, -1, 3, 0, -1], [-1, 0, 0, 3, 0], [0, -2, -1, 0, 3]]]]], ['v1921', [8, 5, 2, 2], [[98, [[2, -1, -1, 0], [-1, 6, 0, -3], [-1, 0, 5, -1], [0, -3, -1, 4]]], [99, [[2, 0, 0, 0, -1], [0, 2, 0, -1, 0], [0, 0, 7, -2, -3], [0, -1, -2, 3, 0], [-1, 0, -3, 0, 4]]]]], ['v1940', [7, 6, 3, 3], [[105, [[2, 0, 0, 0, -1], [0, 2, -1, 0, -1], [0, -1, 5, 0, -3], [0, 0, 0, 3, -2], [-1, -1, -3, -2, 7]]], [106, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, -1, 0, 0], [0, 0, 2, -1, 0, -1], [0, -1, -1, 5, 0, -2], [0, 0, 0, 0, 3, -2], [0, 0, -1, -2, -2, 5]]]]], ['v1966', [8, 6, 3, 3], [[120, [[2, 0, -1, 0, -1], [0, 2, -1, 0, -1], [-1, -1, 4, 0, -1], [0, 0, 0, 3, -2], [-1, -1, -1, -2, 7]]], [121, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 2, -1, 0, -1], [-1, 0, -1, 4, 0, -1], [0, 0, 0, 0, 3, -2], [0, 0, -1, -1, -2, 5]]]]], ['v1980', [5, 3, 3, 2], [[48, [[2, 0, 0, -1], [0, 5, -3, -1], [0, -3, 5, -1], [-1, -1, -1, 3]]], [49, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 4, -1, -1], [0, 0, -1, 3, 0], [-1, -1, -1, 0, 3]]]]], ['v1986', [6, 6, 4, 3], [[99, [[2, 0, -1, -1, 0], [0, 2, 0, 0, -1], [-1, 0, 3, 0, 0], [-1, 0, 0, 6, -3], [0, -1, 0, -3, 4]]], [100, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 3, 0, 0], [0, 0, 0, 0, 4, -2], [0, -1, -1, 0, -2, 4]]]]], ['v2024', [6, 6, 5, 2, 2], [[106, [[2, 0, 0, -1, 0], [0, 2, 0, 0, -1], [0, 0, 4, -1, 0], [-1, 0, -1, 5, -2], [0, -1, 0, -2, 3]]], [107, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, -1], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 4, 0, 0], [0, -1, 0, 0, 3, -1], [-1, -1, -1, 0, -1, 4]]]]], ['v2090', [9, 4, 4, 2, 2], [[122, [[2, 0, -1, 0, -1], [0, 2, 0, -1, -1], [-1, 0, 5, 0, -2], [0, -1, 0, 3, -1], [-1, -1, -2, -1, 6]]], [123, [[2, 0, 0, -1, 0, 0], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, -1, -1], [-1, -1, 0, 5, 0, -1], [0, 0, -1, 0, 3, -1], [0, -1, -1, -1, -1, 4]]]]], ['v2215', [5, 5, 4, 3, 2], [[80, [[2, 0, 0, 0, -1], [0, 5, -2, -1, -1], [0, -2, 3, 0, -1], [0, -1, 0, 3, 0], [-1, -1, -1, 0, 3]]], [81, [[2, 0, 0, 0, -1, -1], [0, 2, 0, 0, 0, -1], [0, 0, 4, -1, -2, 0], [0, 0, -1, 3, 0, -1], [-1, 0, -2, 0, 3, 0], [-1, -1, 0, -1, 0, 3]]]]], ['v2325', [5, 5, 5, 3, 3], [[95, [[2, 0, 0, 0, -1, -1], [0, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [-1, -1, 0, 0, 6, -2], [-1, 0, 0, -1, -2, 4]]], [96, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 4, -2], [0, -1, 0, 0, -1, -2, 4]]]]], ['v2759', [7, 4], [[68, [[2, -1, -1, 0], [-1, 2, 0, -1], [-1, 0, 6, -3], [0, -1, -3, 7]]], [69, [[2, -1, 0, -1, 0], [-1, 2, -1, 0, 0], [0, -1, 2, 0, 0], [-1, 0, 0, 6, -3], [0, 0, 0, -3, 5]]]]], ['v2930', [7, 3, 3, 3], [[78, [[2, 0, 0, 0, -1], [0, 2, -1, 0, -1], [0, -1, 2, 0, 0], [0, 0, 0, 6, -4], [-1, -1, 0, -4, 6]]], [79, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, -1], [0, 0, -1, 2, 0, 0], [0, -1, 0, 0, 6, -3], [0, 0, -1, 0, -3, 4]]]]], ['v3354', [6, 6, 5, 3, 2], [[111, [[2, 0, 0, 0, -1], [0, 6, -1, -2, -3], [0, -1, 3, 0, 0], [0, -2, 0, 3, 0], [-1, -3, 0, 0, 4]]], [112, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1], [0, 0, 4, 0, -2, 0], [-1, 0, 0, 3, 0, -2], [0, 0, -2, 0, 3, -1], [0, -1, 0, -2, -1, 4]]]]]]
len(GOERITZ)
393
In addition we will need the following databases.
import pandas
import time
import snappy
import math
exceptional_filllings = pandas.read_csv("exceptional_fillings.csv")
# We load Dunfield's list from of all exceptional surgeries along the SnapPy CensusKnots.
DBChomologies = pandas.read_csv("DBChomologies.csv")
# We load a list of all alternating links in the HTLinkExteriors together with their homologies
#(if the homology is cyclic) and their crossing numbers.
### REMARK: To build the list DBChomologies we need to run the code in the file Build_DBChomologies which
#takes around 45 minutes. Here we just load it.
First we build a list of all possible integer alternating slopes (measured w.r.t. the SnapPy basis). Note that some integer slopes will not be integer in the SnapPy basis (we refer to the paper for more discussion).
def RecomputingSlopes(knot):
"""
Given a knot such that the (1,0)-filling is S3, it returns an integer n such that lambda_snappy=n mu+ lambda_Seifert.
Warning: If the (1,0)-filling is not S3 it returns False.
"""
if exceptional_filllings.loc[(exceptional_filllings['cusped'] == knot) & (exceptional_filllings['kind'] == 'S3')]['slope'].tolist()!=['(1, 0)']:
return False
M=snappy.Manifold(knot)
M.dehn_fill([(0,1)])
x=M.homology().order()
M.dehn_fill([(1,1)])
y=M.homology().order()
if y+1==x:
n=-x
if y-1==x:
n=x
return n
def Seifert_slopes_to_geometric_slopes(knot,Seifert_slope):
'''
Takes as input a Seifert slope and returns the slope measured with respect to the SnapPy basis.
'''
S3_fillling_string=exceptional_filllings.loc[(exceptional_filllings['cusped'] == knot) & (exceptional_filllings['kind'] == 'S3')]['slope'].tolist()
S3_filling_string_without_brackets=S3_fillling_string[0][1:-1]
(a,b)=tuple(map(int, S3_filling_string_without_brackets.split(', ')))
K=snappy.Manifold(knot)
(c,d)=K.homological_longitude()
(p,q)=Seifert_slope
return (p*a+q*c,p*b+q*d)
### We create a list of all integer surgeries (measured w.r.t. the SnapPy basis).
start_time = time.time()
possible_integer_slopes=[]
for G in GOERITZ:
if RecomputingSlopes(G[0])==False:
for x in G[2]:
(p,q)=Seifert_slopes_to_geometric_slopes(G[0],(x[0],1))
if abs(p)>5 or abs(q)>5:
(p,q)=Seifert_slopes_to_geometric_slopes(G[0],(-x[0],1))
if q<0:
(p,q)=(-p,-q)
if q==0:
(p,q)=(1,0)
possible_integer_slopes.append([G[0],(p,q)])
else:
for x in G[2]:
n=RecomputingSlopes(G[0])
if n<0:
possible_integer_slopes.append([G[0],(-x[0]-n,1)])
if n>0:
possible_integer_slopes.append([G[0],(x[0]-n,1)])
possible_integer_slopes.sort()
print("--- Time taken: %s seconds ---" % (time.time() - start_time))
--- Time taken: 26.110875129699707 seconds ---
print(possible_integer_slopes)
[['m016', (-1, 1)], ['m016', (0, 1)], ['m071', (-1, 1)], ['m071', (0, 1)], ['m082', (0, 1)], ['m082', (1, 1)], ['m103', (-1, 1)], ['m103', (0, 1)], ['m118', (-1, 1)], ['m118', (0, 1)], ['m144', (-1, 1)], ['m144', (0, 1)], ['m194', (0, 1)], ['m194', (1, 1)], ['m198', (0, 1)], ['m198', (1, 1)], ['m239', (-1, 1)], ['m239', (0, 1)], ['m240', (-1, 1)], ['m240', (1, 0)], ['m270', (1, 0)], ['m270', (1, 1)], ['m276', (1, 0)], ['m276', (1, 1)], ['m281', (0, 1)], ['m281', (1, 1)], ['o9_00133', (-1, 1)], ['o9_00133', (0, 1)], ['o9_00168', (0, 1)], ['o9_00168', (1, 1)], ['o9_00644', (-1, 1)], ['o9_00644', (0, 1)], ['o9_00797', (-1, 1)], ['o9_00797', (0, 1)], ['o9_00815', (-1, 1)], ['o9_00815', (0, 1)], ['o9_01436', (0, 1)], ['o9_01436', (1, 1)], ['o9_01496', (-1, 1)], ['o9_01496', (0, 1)], ['o9_01584', (-1, 1)], ['o9_01584', (0, 1)], ['o9_01621', (0, 1)], ['o9_01621', (1, 1)], ['o9_01680', (1, 0)], ['o9_01680', (1, 1)], ['o9_01765', (-1, 1)], ['o9_01765', (1, 0)], ['o9_01953', (0, 1)], ['o9_01953', (1, 1)], ['o9_01955', (0, 1)], ['o9_01955', (1, 1)], ['o9_02255', (0, 1)], ['o9_02255', (1, 1)], ['o9_02340', (-1, 1)], ['o9_02340', (1, 0)], ['o9_02350', (0, 1)], ['o9_02350', (1, 1)], ['o9_02386', (-1, 1)], ['o9_02386', (1, 0)], ['o9_02655', (-1, 1)], ['o9_02655', (0, 1)], ['o9_02696', (-1, 1)], ['o9_02696', (0, 1)], ['o9_02706', (-1, 1)], ['o9_02706', (1, 0)], ['o9_02735', (1, 0)], ['o9_02735', (1, 1)], ['o9_02772', (-1, 1)], ['o9_02772', (0, 1)], ['o9_02786', (-2, 1)], ['o9_02786', (-1, 1)], ['o9_02794', (0, 1)], ['o9_02794', (1, 1)], ['o9_03032', (-1, 1)], ['o9_03032', (0, 1)], ['o9_03108', (-1, 1)], ['o9_03108', (0, 1)], ['o9_03118', (-1, 1)], ['o9_03118', (1, 0)], ['o9_03133', (0, 1)], ['o9_03133', (1, 1)], ['o9_03149', (1, 0)], ['o9_03149', (1, 1)], ['o9_03162', (0, 1)], ['o9_03162', (1, 1)], ['o9_03188', (0, 1)], ['o9_03188', (1, 1)], ['o9_03288', (1, 0)], ['o9_03288', (1, 1)], ['o9_03313', (0, 1)], ['o9_03313', (1, 1)], ['o9_03412', (1, 0)], ['o9_03412', (1, 1)], ['o9_03526', (-1, 1)], ['o9_03526', (1, 0)], ['o9_03586', (-1, 1)], ['o9_03586', (0, 1)], ['o9_03622', (-1, 1)], ['o9_03622', (0, 1)], ['o9_03802', (-1, 1)], ['o9_03802', (0, 1)], ['o9_03833', (-1, 1)], ['o9_03833', (0, 1)], ['o9_03932', (1, 0)], ['o9_03932', (1, 1)], ['o9_04106', (0, 1)], ['o9_04106', (1, 1)], ['o9_04205', (0, 1)], ['o9_04205', (1, 1)], ['o9_04245', (-1, 1)], ['o9_04245', (0, 1)], ['o9_04269', (-2, 1)], ['o9_04269', (-1, 1)], ['o9_04313', (1, 0)], ['o9_04313', (1, 1)], ['o9_04431', (1, 0)], ['o9_04431', (1, 1)], ['o9_04435', (1, 0)], ['o9_04435', (1, 1)], ['o9_04438', (-1, 1)], ['o9_04438', (0, 1)], ['o9_05021', (-1, 1)], ['o9_05021', (0, 1)], ['o9_05177', (-1, 1)], ['o9_05177', (0, 1)], ['o9_05229', (-1, 1)], ['o9_05229', (0, 1)], ['o9_05357', (-1, 1)], ['o9_05357', (0, 1)], ['o9_05426', (-1, 1)], ['o9_05426', (0, 1)], ['o9_05483', (-1, 1)], ['o9_05483', (0, 1)], ['o9_05562', (-1, 1)], ['o9_05562', (0, 1)], ['o9_05618', (-1, 1)], ['o9_05618', (0, 1)], ['o9_05860', (-1, 1)], ['o9_05860', (0, 1)], ['o9_05970', (-1, 1)], ['o9_05970', (0, 1)], ['o9_06060', (0, 1)], ['o9_06060', (1, 1)], ['o9_06128', (-1, 1)], ['o9_06128', (0, 1)], ['o9_06154', (0, 1)], ['o9_06154', (1, 1)], ['o9_06248', (-1, 1)], ['o9_06248', (0, 1)], ['o9_06301', (-1, 1)], ['o9_06301', (0, 1)], ['o9_07790', (-1, 1)], ['o9_07790', (0, 1)], ['o9_07893', (-1, 1)], ['o9_07893', (0, 1)], ['o9_07943', (0, 1)], ['o9_07943', (1, 0)], ['o9_07945', (-1, 1)], ['o9_07945', (0, 1)], ['o9_08006', (-1, 1)], ['o9_08006', (0, 1)], ['o9_08042', (0, 1)], ['o9_08042', (1, 0)], ['o9_08224', (1, 1)], ['o9_08224', (2, 1)], ['o9_08302', (1, 1)], ['o9_08302', (2, 1)], ['o9_08477', (0, 1)], ['o9_08477', (1, 1)], ['o9_08647', (1, 0)], ['o9_08647', (1, 1)], ['o9_08765', (-2, 1)], ['o9_08765', (-1, 1)], ['o9_08771', (1, 0)], ['o9_08771', (1, 1)], ['o9_08776', (0, 1)], ['o9_08776', (1, 0)], ['o9_08828', (-1, 1)], ['o9_08828', (0, 1)], ['o9_08831', (-2, 1)], ['o9_08831', (-1, 1)], ['o9_08852', (0, 1)], ['o9_08852', (1, 0)], ['o9_08875', (-1, 1)], ['o9_08875', (0, 1)], ['o9_09213', (0, 1)], ['o9_09213', (1, 1)], ['o9_09465', (-1, 1)], ['o9_09465', (0, 1)], ['o9_09808', (-1, 1)], ['o9_09808', (0, 1)], ['o9_10696', (0, 1)], ['o9_10696', (1, 0)], ['o9_11248', (1, 0)], ['o9_11248', (1, 1)], ['o9_11467', (0, 1)], ['o9_11467', (1, 0)], ['o9_11560', (0, 1)], ['o9_11560', (1, 0)], ['o9_11570', (0, 1)], ['o9_11570', (1, 1)], ['o9_11685', (1, 1)], ['o9_11685', (2, 1)], ['o9_11795', (-2, 1)], ['o9_11795', (-1, 1)], ['o9_11845', (-2, 1)], ['o9_11845', (-1, 1)], ['o9_11999', (1, 0)], ['o9_11999', (1, 1)], ['o9_12144', (0, 1)], ['o9_12144', (1, 0)], ['o9_12230', (0, 1)], ['o9_12230', (1, 0)], ['o9_12412', (1, 1)], ['o9_12412', (2, 1)], ['o9_12459', (-1, 1)], ['o9_12459', (1, 0)], ['o9_12519', (-1, 1)], ['o9_12519', (0, 1)], ['o9_12693', (-1, 1)], ['o9_12693', (0, 1)], ['o9_12736', (0, 1)], ['o9_12736', (1, 0)], ['o9_12757', (-1, 1)], ['o9_12757', (0, 1)], ['o9_12873', (-1, 1)], ['o9_12873', (0, 1)], ['o9_12892', (-2, 1)], ['o9_12892', (-1, 1)], ['o9_12919', (-2, 1)], ['o9_12919', (-1, 1)], ['o9_12971', (-1, 1)], ['o9_12971', (0, 1)], ['o9_13052', (-1, 1)], ['o9_13052', (1, 0)], ['o9_13056', (0, 1)], ['o9_13056', (1, 0)], ['o9_13125', (1, 0)], ['o9_13125', (1, 1)], ['o9_13182', (-2, 1)], ['o9_13182', (-1, 1)], ['o9_13188', (-1, 1)], ['o9_13188', (0, 1)], ['o9_13400', (-1, 1)], ['o9_13400', (0, 1)], ['o9_13403', (-2, 1)], ['o9_13403', (-1, 1)], ['o9_13433', (0, 1)], ['o9_13433', (1, 1)], ['o9_13508', (0, 1)], ['o9_13508', (1, 0)], ['o9_13537', (-2, 1)], ['o9_13537', (-1, 1)], ['o9_13604', (-1, 1)], ['o9_13604', (0, 1)], ['o9_13639', (0, 1)], ['o9_13639', (1, 1)], ['o9_13649', (1, 1)], ['o9_13649', (2, 1)], ['o9_13666', (1, 0)], ['o9_13666', (1, 1)], ['o9_13720', (0, 1)], ['o9_13720', (1, 1)], ['o9_13952', (0, 1)], ['o9_13952', (1, 1)], ['o9_14018', (0, 1)], ['o9_14018', (1, 0)], ['o9_14079', (-1, 1)], ['o9_14079', (0, 1)], ['o9_14136', (0, 1)], ['o9_14136', (1, 0)], ['o9_14364', (-2, 1)], ['o9_14364', (-1, 1)], ['o9_14376', (0, 1)], ['o9_14376', (1, 1)], ['o9_14495', (-2, 1)], ['o9_14495', (-1, 1)], ['o9_14599', (-1, 1)], ['o9_14599', (0, 1)], ['o9_14716', (-1, 1)], ['o9_14716', (0, 1)], ['o9_14831', (-1, 1)], ['o9_14831', (0, 1)], ['o9_14974', (0, 1)], ['o9_14974', (1, 1)], ['o9_15506', (1, 1)], ['o9_15506', (2, 1)], ['o9_15633', (0, 1)], ['o9_15633', (1, 1)], ['o9_15997', (-1, 1)], ['o9_15997', (0, 1)], ['o9_16065', (-1, 1)], ['o9_16065', (0, 1)], ['o9_16141', (-1, 1)], ['o9_16141', (0, 1)], ['o9_16157', (-1, 1)], ['o9_16157', (0, 1)], ['o9_16181', (0, 1)], ['o9_16181', (1, 1)], ['o9_16319', (-1, 1)], ['o9_16319', (0, 1)], ['o9_16356', (0, 1)], ['o9_16356', (1, 1)], ['o9_16527', (0, 1)], ['o9_16527', (1, 1)], ['o9_16642', (-1, 1)], ['o9_16642', (0, 1)], ['o9_16748', (-1, 1)], ['o9_16748', (0, 1)], ['o9_16920', (-1, 1)], ['o9_16920', (0, 1)], ['o9_17450', (-2, 1)], ['o9_17450', (-1, 1)], ['o9_18007', (-1, 1)], ['o9_18007', (0, 1)], ['o9_18209', (0, 1)], ['o9_18209', (1, 1)], ['o9_18633', (-2, 1)], ['o9_18633', (-1, 1)], ['o9_18813', (0, 1)], ['o9_18813', (1, 1)], ['o9_19130', (0, 1)], ['o9_19130', (1, 1)], ['o9_20219', (-1, 1)], ['o9_20219', (0, 1)], ['o9_21893', (-1, 1)], ['o9_21893', (1, 0)], ['o9_21918', (-1, 1)], ['o9_21918', (0, 1)], ['o9_22129', (-1, 1)], ['o9_22129', (0, 1)], ['o9_22477', (-1, 1)], ['o9_22477', (0, 1)], ['o9_22607', (0, 1)], ['o9_22607', (1, 1)], ['o9_22663', (-1, 1)], ['o9_22663', (0, 1)], ['o9_22698', (0, 1)], ['o9_22698', (1, 1)], ['o9_22925', (-1, 1)], ['o9_22925', (0, 1)], ['o9_23023', (0, 1)], ['o9_23023', (1, 1)], ['o9_23263', (0, 1)], ['o9_23263', (1, 1)], ['o9_23660', (0, 1)], ['o9_23660', (1, 1)], ['o9_23955', (-1, 1)], ['o9_23955', (0, 1)], ['o9_23961', (0, 1)], ['o9_23961', (1, 1)], ['o9_23977', (0, 1)], ['o9_23977', (1, 1)], ['o9_24149', (-1, 1)], ['o9_24149', (0, 1)], ['o9_24183', (1, 0)], ['o9_24183', (1, 1)], ['o9_24534', (-1, 1)], ['o9_24534', (1, 0)], ['o9_24592', (-1, 1)], ['o9_24592', (0, 1)], ['o9_24886', (-1, 1)], ['o9_24886', (0, 1)], ['o9_24889', (0, 1)], ['o9_24889', (1, 1)], ['o9_25595', (-1, 1)], ['o9_25595', (0, 1)], ['o9_26604', (0, 1)], ['o9_26604', (1, 1)], ['o9_26791', (-1, 1)], ['o9_26791', (0, 1)], ['o9_27155', (0, 1)], ['o9_27155', (1, 1)], ['o9_27261', (-1, 1)], ['o9_27261', (0, 1)], ['o9_27392', (-1, 1)], ['o9_27392', (0, 1)], ['o9_27480', (0, 1)], ['o9_27480', (1, 1)], ['o9_27737', (0, 1)], ['o9_27737', (1, 1)], ['o9_28113', (0, 1)], ['o9_28113', (1, 1)], ['o9_28153', (0, 1)], ['o9_28153', (1, 1)], ['o9_28529', (-1, 1)], ['o9_28529', (1, 0)], ['o9_28592', (-1, 1)], ['o9_28592', (0, 1)], ['o9_28746', (-1, 1)], ['o9_28746', (0, 1)], ['o9_28810', (0, 1)], ['o9_28810', (1, 1)], ['o9_29246', (-1, 1)], ['o9_29246', (0, 1)], ['o9_29436', (0, 1)], ['o9_29436', (1, 1)], ['o9_29529', (0, 1)], ['o9_29529', (1, 1)], ['o9_30375', (0, 1)], ['o9_30375', (1, 1)], ['o9_30721', (0, 1)], ['o9_30721', (1, 1)], ['o9_30790', (0, 1)], ['o9_30790', (1, 1)], ['o9_31165', (0, 1)], ['o9_31165', (1, 1)], ['o9_32132', (0, 1)], ['o9_32257', (0, 1)], ['o9_32257', (1, 1)], ['o9_32588', (0, 1)], ['o9_33526', (-1, 1)], ['o9_33526', (0, 1)], ['o9_33585', (-1, 1)], ['o9_33585', (0, 1)], ['o9_34403', (-1, 1)], ['o9_34403', (0, 1)], ['o9_35320', (-1, 1)], ['o9_35320', (0, 1)], ['o9_35549', (0, 1)], ['o9_35549', (1, 1)], ['o9_35682', (0, 1)], ['o9_35682', (1, 1)], ['o9_35736', (0, 1)], ['o9_35736', (1, 1)], ['o9_35772', (-1, 1)], ['o9_35772', (0, 1)], ['o9_37754', (1, 1)], ['o9_37941', (-1, 1)], ['o9_37941', (0, 1)], ['o9_39394', (0, 1)], ['o9_39394', (1, 1)], ['o9_39451', (1, 1)], ['o9_40179', (0, 1)], ['o9_43001', (0, 1)], ['o9_43679', (0, 1)], ['o9_43953', (0, 1)], ['o9_44054', (0, 1)], ['s042', (0, 1)], ['s042', (1, 1)], ['s068', (-1, 1)], ['s068', (0, 1)], ['s086', (-1, 1)], ['s086', (0, 1)], ['s104', (-1, 1)], ['s104', (0, 1)], ['s114', (-1, 1)], ['s114', (0, 1)], ['s294', (-1, 1)], ['s294', (0, 1)], ['s301', (0, 1)], ['s301', (1, 1)], ['s308', (-1, 1)], ['s308', (0, 1)], ['s336', (-2, 1)], ['s336', (-1, 1)], ['s344', (1, 0)], ['s344', (1, 1)], ['s346', (0, 1)], ['s346', (1, 1)], ['s367', (0, 1)], ['s367', (1, 1)], ['s369', (-1, 1)], ['s369', (1, 0)], ['s407', (-1, 1)], ['s407', (0, 1)], ['s582', (-1, 1)], ['s582', (0, 1)], ['s665', (0, 1)], ['s665', (1, 1)], ['s684', (0, 1)], ['s684', (1, 1)], ['s769', (0, 1)], ['s769', (1, 0)], ['s800', (-1, 1)], ['s800', (0, 1)], ['t00110', (0, 1)], ['t00110', (1, 1)], ['t00146', (-1, 1)], ['t00146', (0, 1)], ['t00324', (-1, 1)], ['t00324', (0, 1)], ['t00423', (-1, 1)], ['t00423', (0, 1)], ['t00434', (0, 1)], ['t00434', (1, 1)], ['t00729', (-1, 1)], ['t00729', (0, 1)], ['t00787', (0, 1)], ['t00787', (1, 1)], ['t00826', (0, 1)], ['t00826', (1, 1)], ['t00855', (-1, 1)], ['t00855', (0, 1)], ['t00873', (1, 0)], ['t00873', (1, 1)], ['t00932', (-1, 1)], ['t00932', (1, 0)], ['t01033', (0, 1)], ['t01033', (1, 1)], ['t01037', (-1, 1)], ['t01037', (0, 1)], ['t01125', (0, 1)], ['t01125', (1, 1)], ['t01216', (1, 0)], ['t01216', (1, 1)], ['t01268', (0, 1)], ['t01268', (1, 1)], ['t01292', (1, 0)], ['t01292', (1, 1)], ['t01318', (0, 1)], ['t01318', (1, 1)], ['t01368', (0, 1)], ['t01368', (1, 1)], ['t01409', (1, 0)], ['t01409', (1, 1)], ['t01422', (-2, 1)], ['t01422', (-1, 1)], ['t01424', (-1, 1)], ['t01424', (1, 0)], ['t01440', (0, 1)], ['t01440', (1, 1)], ['t01598', (-1, 1)], ['t01598', (1, 0)], ['t01636', (0, 1)], ['t01636', (1, 1)], ['t01646', (-1, 1)], ['t01646', (1, 0)], ['t01690', (0, 1)], ['t01690', (1, 1)], ['t01757', (-1, 1)], ['t01757', (0, 1)], ['t01834', (-1, 1)], ['t01834', (0, 1)], ['t01850', (1, 0)], ['t01850', (1, 1)], ['t01863', (0, 1)], ['t01863', (1, 1)], ['t01949', (1, 0)], ['t01949', (1, 1)], ['t02099', (-2, 1)], ['t02099', (-1, 1)], ['t02104', (-1, 1)], ['t02104', (0, 1)], ['t02238', (-1, 1)], ['t02238', (0, 1)], ['t02378', (-1, 1)], ['t02378', (0, 1)], ['t02398', (-1, 1)], ['t02398', (0, 1)], ['t02404', (-1, 1)], ['t02404', (0, 1)], ['t02470', (0, 1)], ['t02470', (1, 1)], ['t02537', (-1, 1)], ['t02537', (0, 1)], ['t02567', (-1, 1)], ['t02567', (0, 1)], ['t02639', (0, 1)], ['t02639', (1, 1)], ['t03566', (0, 1)], ['t03566', (1, 0)], ['t03607', (0, 1)], ['t03607', (1, 1)], ['t03709', (0, 1)], ['t03709', (1, 0)], ['t03713', (-2, 1)], ['t03713', (-1, 1)], ['t03781', (0, 1)], ['t03781', (1, 1)], ['t03864', (1, 1)], ['t03864', (2, 1)], ['t03956', (-2, 1)], ['t03956', (-1, 1)], ['t03979', (-1, 1)], ['t03979', (0, 1)], ['t04003', (-2, 1)], ['t04003', (-1, 1)], ['t04019', (-1, 1)], ['t04019', (0, 1)], ['t04102', (1, 1)], ['t04102', (2, 1)], ['t04180', (-1, 1)], ['t04180', (0, 1)], ['t04228', (0, 1)], ['t04228', (1, 0)], ['t04244', (1, 0)], ['t04244', (1, 1)], ['t04382', (0, 1)], ['t04382', (1, 1)], ['t04721', (1, 0)], ['t04721', (1, 1)], ['t05118', (-1, 1)], ['t05118', (0, 1)], ['t05239', (0, 1)], ['t05239', (1, 0)], ['t05390', (-2, 1)], ['t05390', (-1, 1)], ['t05425', (0, 1)], ['t05425', (1, 1)], ['t05426', (0, 1)], ['t05426', (1, 0)], ['t05538', (-1, 1)], ['t05538', (0, 1)], ['t05564', (-1, 1)], ['t05564', (0, 1)], ['t05578', (0, 1)], ['t05578', (1, 0)], ['t05658', (1, 0)], ['t05658', (1, 1)], ['t05663', (0, 1)], ['t05663', (1, 0)], ['t05674', (-1, 1)], ['t05674', (0, 1)], ['t05695', (-1, 1)], ['t05695', (0, 1)], ['t06001', (-1, 1)], ['t06001', (1, 0)], ['t06440', (-1, 1)], ['t06440', (0, 1)], ['t06463', (0, 1)], ['t06463', (1, 1)], ['t06525', (0, 1)], ['t06525', (1, 1)], ['t06570', (-1, 1)], ['t06570', (0, 1)], ['t06605', (0, 1)], ['t06605', (1, 1)], ['t07348', (-1, 1)], ['t07348', (0, 1)], ['t08111', (-1, 1)], ['t08111', (0, 1)], ['t08201', (0, 1)], ['t08201', (1, 1)], ['t08267', (0, 1)], ['t08267', (1, 1)], ['t08403', (-1, 1)], ['t08403', (0, 1)], ['t09016', (-1, 1)], ['t09016', (0, 1)], ['t09267', (0, 1)], ['t09267', (1, 1)], ['t09313', (0, 1)], ['t09313', (1, 1)], ['t09455', (-1, 1)], ['t09455', (0, 1)], ['t09580', (-1, 1)], ['t09580', (0, 1)], ['t09704', (-1, 1)], ['t09704', (0, 1)], ['t09852', (0, 1)], ['t09852', (1, 1)], ['t09954', (-1, 1)], ['t09954', (0, 1)], ['t10188', (0, 1)], ['t10230', (0, 1)], ['t10230', (1, 1)], ['t10462', (-1, 1)], ['t10462', (0, 1)], ['t10643', (0, 1)], ['t10643', (1, 1)], ['t10681', (-1, 1)], ['t10681', (0, 1)], ['t10985', (-1, 1)], ['t10985', (0, 1)], ['t11556', (-1, 1)], ['t11852', (0, 1)], ['t11852', (1, 1)], ['t12753', (0, 1)], ['v0082', (0, 1)], ['v0082', (1, 1)], ['v0114', (0, 1)], ['v0114', (1, 1)], ['v0165', (0, 1)], ['v0165', (1, 1)], ['v0220', (0, 1)], ['v0220', (1, 1)], ['v0223', (0, 1)], ['v0223', (1, 1)], ['v0330', (0, 1)], ['v0330', (1, 1)], ['v0398', (0, 1)], ['v0398', (1, 1)], ['v0407', (0, 1)], ['v0407', (1, 1)], ['v0424', (1, 0)], ['v0424', (1, 1)], ['v0434', (-1, 1)], ['v0434', (0, 1)], ['v0497', (1, 0)], ['v0497', (1, 1)], ['v0554', (0, 1)], ['v0554', (1, 1)], ['v0570', (0, 1)], ['v0570', (1, 1)], ['v0573', (-1, 1)], ['v0573', (0, 1)], ['v0707', (-2, 1)], ['v0707', (-1, 1)], ['v0709', (1, 0)], ['v0709', (1, 1)], ['v0715', (-1, 1)], ['v0715', (1, 0)], ['v0740', (0, 1)], ['v0740', (1, 1)], ['v0741', (1, 0)], ['v0741', (1, 1)], ['v0759', (-1, 1)], ['v0759', (0, 1)], ['v0765', (-1, 1)], ['v0765', (0, 1)], ['v0847', (-1, 1)], ['v0847', (1, 0)], ['v0912', (1, 0)], ['v0912', (1, 1)], ['v0939', (-1, 1)], ['v0939', (0, 1)], ['v0945', (0, 1)], ['v0945', (1, 1)], ['v1077', (0, 1)], ['v1077', (1, 1)], ['v1109', (-1, 1)], ['v1109', (0, 1)], ['v1300', (0, 1)], ['v1300', (1, 0)], ['v1392', (-2, 1)], ['v1392', (-1, 1)], ['v1547', (-2, 1)], ['v1547', (-1, 1)], ['v1620', (0, 1)], ['v1620', (1, 1)], ['v1628', (0, 1)], ['v1628', (1, 0)], ['v1690', (-2, 1)], ['v1690', (-1, 1)], ['v1709', (-1, 1)], ['v1709', (0, 1)], ['v1716', (1, 1)], ['v1716', (2, 1)], ['v1718', (-1, 1)], ['v1718', (0, 1)], ['v1728', (1, 1)], ['v1728', (2, 1)], ['v1810', (-1, 1)], ['v1810', (0, 1)], ['v1832', (0, 1)], ['v1832', (1, 1)], ['v1839', (-1, 1)], ['v1839', (0, 1)], ['v1921', (-1, 1)], ['v1921', (0, 1)], ['v1940', (0, 1)], ['v1940', (1, 0)], ['v1966', (0, 1)], ['v1966', (1, 0)], ['v1980', (-1, 1)], ['v1980', (0, 1)], ['v1986', (-1, 1)], ['v1986', (0, 1)], ['v2024', (0, 1)], ['v2024', (1, 1)], ['v2090', (-1, 1)], ['v2090', (0, 1)], ['v2215', (0, 1)], ['v2215', (1, 1)], ['v2325', (-1, 1)], ['v2325', (0, 1)], ['v2759', (0, 1)], ['v2759', (1, 1)], ['v2930', (-1, 1)], ['v2930', (0, 1)], ['v3354', (0, 1)], ['v3354', (1, 1)]]
len(possible_integer_slopes)
774
Next we sort these 774 possible integer alternating slopes into slopes which are hyperbolic and those which are not.
def is_hyperbolic(knot,slope):
'''
Uses Dunfield's data to read off if a given slope is hyperbolic.
'''
exceptional_slopes_strings=exceptional_filllings.loc[(exceptional_filllings['cusped'] == knot)]['slope'].tolist()
exceptional_slopes=[]
for string in exceptional_slopes_strings:
string_without_brackets=string[1:-1]
exceptional_slopes.append(tuple(map(int, string_without_brackets.split(', '))))
if slope in exceptional_slopes:
return False
else:
return True
start_time = time.time()
possible_hyperbolic_slopes=[]
possible_non_hyperbolic_slopes=[]
for (knot,slope) in possible_integer_slopes:
if is_hyperbolic(knot,slope)==True:
possible_hyperbolic_slopes.append([knot,slope])
else:
possible_non_hyperbolic_slopes.append([knot,slope])
print("--- Time taken: %s seconds ---" % (time.time() - start_time))
--- Time taken: 6.542446613311768 seconds ---
len(possible_hyperbolic_slopes)
59
len(possible_non_hyperbolic_slopes)
715
First we handle the hyperbolic slopes. Here we just run through the HT link table take the double branched covers and search for a match.
def double_branched_cover(link):
"""
Returns the double branched cover of the link.
"""
L=link.copy()
for i in range(L.num_cusps()):
L.dehn_fill((2,0),i)
for cov in L.covers(2):
if (2.0, 0.0) not in cov.cusp_info('filling'):
return cov
def better_is_isometric_to(X,Y,index):
"""
Returns True if X and Y are isometric.
Returns False if X and Y have different homologies. TO DO: Use volume to rigorously distinguish X and Y.
Returns 'unclear' if SnapPy cannot verify it.
The higher the index the harder SnapPy tries.
"""
w='unclear'
if X.homology()!=Y.homology():
w=False
if w=='unclear':
for i in (0,index):
try:
w=X.is_isometric_to(Y)
except RuntimeError:
pass
except SnapPeaFatalError:
pass
if w==True:
break
if w==False:
w='unclear'
X.randomize()
Y.randomize()
i=i+1
return w
def possible_DBC(homologies,max_crossings=15):
"""
Takes a list of orders of homologies and returns a list consisting of all DBC of alternating links in the HT link table with that homologies together with the link names.
"""
DBCList=[]
LINKS=[]
for order in homologies:
LINKS=LINKS+DBChomologies.loc[(DBChomologies['homology']==order) & (DBChomologies['crossings']<=max_crossings)]['knot'].tolist()
for link in LINKS:
L=snappy.Manifold(link)
D=double_branched_cover(L)
DBCList.append([D,link])
return DBCList
def is_alternating(knot,slope):
K=snappy.Manifold(knot)
K.dehn_fill(slope)
DBC=possible_DBC([K.homology().order()],max_crossings=13) #13 crossings is sufficient by the result on the Goeritz matrices.
for D in DBC:
w=better_is_isometric_to(D[0],K,10)
if w==True:
return [[knot,slope,D[1]]]
return False
start_time = time.time()
HYPERBOLIC_ALTERNATING_SLOPES=[]
UNCLEAR_HYPERBOLIC_SLOPES=[]
for (knot,slope) in possible_hyperbolic_slopes:
w=is_alternating(knot,slope)
if w==False:
UNCLEAR_HYPERBOLIC_SLOPES.append([knot,slope])
else:
HYPERBOLIC_ALTERNATING_SLOPES=HYPERBOLIC_ALTERNATING_SLOPES+w
print("--- Time taken: %s seconds ---" % (time.time() - start_time))
--- Time taken: 30.411959886550903 seconds ---
print(UNCLEAR_HYPERBOLIC_SLOPES)
[]
HYPERBOLIC_ALTERNATING_SLOPES
[['o9_08224', (2, 1), 'K12a1178'], ['o9_08302', (2, 1), 'L12a1298'], ['o9_08765', (-2, 1), 'L12a987'], ['o9_08831', (-2, 1), 'K12a977'], ['o9_11685', (2, 1), 'K12a1169'], ['o9_11795', (-2, 1), 'K12a952'], ['o9_11845', (-2, 1), 'K12a1238'], ['o9_12412', (2, 1), 'K12a660'], ['o9_12892', (-2, 1), 'L12a998'], ['o9_12919', (-2, 1), 'K12a1236'], ['o9_13182', (-2, 1), 'K12a1262'], ['o9_13403', (-2, 1), 'K12a262'], ['o9_13537', (-2, 1), 'L12a912'], ['o9_13649', (2, 1), 'L12a1313'], ['o9_14364', (-2, 1), 'K12a1047'], ['o9_14495', (-2, 1), 'K12a617'], ['o9_15506', (2, 1), 'K12a349'], ['o9_17450', (-2, 1), 'L12a821'], ['o9_18633', (-2, 1), 'K12a779'], ['o9_23977', (1, 1), 'K12a989'], ['o9_26791', (-1, 1), 'K12a321'], ['o9_27155', (1, 1), 'L12a923'], ['o9_27261', (-1, 1), 'K12a635'], ['o9_28153', (1, 1), 'L12a1133'], ['o9_28746', (-1, 1), 'L12a1097'], ['o9_28810', (1, 1), 'K12a403'], ['o9_30375', (1, 1), 'K12a284'], ['o9_32132', (0, 1), 'K10a45'], ['o9_32257', (1, 1), 'L11a313'], ['o9_32588', (0, 1), 'L10a106'], ['o9_33526', (-1, 1), 'K10a72'], ['o9_34403', (-1, 1), 'K11a137'], ['o9_35320', (0, 1), 'K11a312'], ['o9_35682', (1, 1), 'K11a295'], ['o9_35772', (-1, 1), 'K11a320'], ['o9_37754', (1, 1), 'L10a76'], ['o9_37941', (-1, 1), 'K11a115'], ['o9_39394', (1, 1), 'K11a217'], ['o9_39451', (1, 1), 'K10a99'], ['o9_43001', (0, 1), 'L10a71'], ['o9_43679', (0, 1), 'K11a227'], ['o9_43953', (0, 1), 'K11a304'], ['o9_44054', (0, 1), 'L11a229'], ['t03713', (-2, 1), 'L11a328'], ['t03864', (2, 1), 'K11a215'], ['t03956', (-2, 1), 'L11a377'], ['t04003', (-2, 1), 'K11a158'], ['t04102', (2, 1), 'L11a239'], ['t05390', (-2, 1), 'K11a296'], ['t09580', (-1, 1), 'K11a148'], ['t10230', (1, 1), 'K10a97'], ['t10462', (-1, 1), 'L11a321'], ['t11556', (-1, 1), 'L9a20'], ['t11852', (1, 1), 'K10a45'], ['v1392', (-2, 1), 'K10a119'], ['v1547', (-2, 1), 'L10a80'], ['v1690', (-2, 1), 'L10a106'], ['v1716', (2, 1), 'K10a98'], ['v1728', (2, 1), 'K10a95']]
Next, we Dunfield's data to search for lens space surgeries and alternating surgeries to small Seifert fibered spaces.
#########################################################################################
#################### CODE FOR SEARCHING LENS SPACE SURGERIES ############################
#########################################################################################
def has_lens_space_surgery(knot,all=False):
"""
Searches for lens space surgeries along the knot. If there exists no lens space surgery it returns False.
Otherwise it returns a lens space surgery slope together with the corresponding lens space.
If all=True it returns all lens space surgery slopes together with the lens spaces.
"""
lens_space_surgeries=[]
slopes=exceptional_filllings.loc[(exceptional_filllings['cusped'] == knot)]['slope'].tolist()
kinds=exceptional_filllings.loc[(exceptional_filllings['cusped'] == knot)]['kind'].tolist()
regina_names=exceptional_filllings.loc[(exceptional_filllings['cusped'] == knot)]['regina_name'].tolist()
for i in range(0,len(kinds)):
if kinds[i]=='lens_space':
lens_space_surgeries.append([knot,slopes[i],regina_names[i]])
if lens_space_surgeries==[]:
return False
if all:
return lens_space_surgeries
return [lens_space_surgeries[0]]
########################################################################################
#################### CODE FOR SEARCHING SFS SPACE SURGERIES ############################
########################################################################################
def read_off_invariants(regina_name):
"""
Takes the regina_name of a small Seifert fibered space and returns a list with its Seifert invariants.
For example: read_off_invariants('SFS [S2: (2,1) (3,1) (5,22)]') = [2, 1, 3, 1, 5, 22]
"""
set=[]
invariants=[]
set.append([regina_name.split()[2],regina_name.split()[3],regina_name.split()[4][:-1]])
for z in set[0]:
y=z[1:-1]
y=y.replace(',',' ')
for n in y.split():
invariants.append(int(n))
return invariants
def branching_set_of_small_SFS(invariants):
"""
Takes as input the Seifert invariants of a small Seifert fibered space and identify the branching set of its quotient under the Z2-action.
Example: The Seifert fibered space (in Regina's notation) 'SFS [S2: (2,1) (3,1) (5,22)]') is the double branched cover over
branching_set_of_small_SFS([2, 1, 3, 1, 5, 22]) = K13a666(0,0)
"""
T= snappy.RationalTangle(invariants[0],invariants[1])*snappy.RationalTangle(invariants[2],invariants[3])*snappy.RationalTangle(invariants[4],invariants[5])
L=T.denominator_closure()
B=L.exterior()
if B.identify()!=[]:
return B.identify()[-1].name()
else:
return []
def has_SFS_surgery(knot,all=False,alternating=False):
"""
Searches for (small Seifert fibered space) SFS surgeries along the knot. If there exists no SFS surgery it returns False.
Otherwise it returns a SFS space surgery slope together with the corresponding SFS and the branching set.
If all=True it returns all SFS surgery slopes together with the SFS and the branching sets.
If alternating is True it returns only SFS surgeries where SnapPy can confirm the branching set to be alternating (Warning: This might not be all).
"""
SFS_surgeries=[]
slopes=exceptional_filllings.loc[(exceptional_filllings['cusped'] == knot)]['slope'].tolist()
kinds=exceptional_filllings.loc[(exceptional_filllings['cusped'] == knot)]['kind'].tolist()
regina_names=exceptional_filllings.loc[(exceptional_filllings['cusped'] == knot)]['regina_name'].tolist()
for i in range(0,len(kinds)):
if kinds[i]=='finite' or kinds[i]=='seifert_ator':
B=branching_set_of_small_SFS(read_off_invariants(regina_names[i]))
SFS_surgeries.append([knot,slopes[i],regina_names[i],B])
if alternating:
SFS_surgeries=[]
for i in range(0,len(kinds)):
if kinds[i]=='finite' or kinds[i]=='seifert_ator':
B=branching_set_of_small_SFS(read_off_invariants(regina_names[i]))
if B!=[]:
if snappy.Manifold(B).link().is_alternating()==True:
SFS_surgeries.append([knot,slopes[i],regina_names[i],B])
if SFS_surgeries==[]:
return False
if all:
return SFS_surgeries
return [SFS_surgeries[0]]
##################################################################################################################################
################################# Search for non hyperbolic alternating surgeries ################################################
##################################################################################################################################
### We combine the lens space and SFS search to a single function.
def has_non_hyperbolic_alternating_surgery(knot,return_complete_list=False):
"""
Searches for non-hyperbolic alternating surgeries.
Warning: Does not find any alternating surgeries to graph manifolds.
"""
alternating_surgeries=[]
w=has_lens_space_surgery(knot,all=True)
if w!=False:
alternating_surgeries=alternating_surgeries+w
w=has_SFS_surgery(knot,alternating=True,all=True)
if w!=False:
alternating_surgeries=alternating_surgeries+w
alternating_surgeries.sort()
if return_complete_list==False:
if alternating_surgeries==[]:
return alternating_surgeries
return alternating_surgeries[0]
return alternating_surgeries
start_time = time.time()
SEIFERT_FIBERED_ALTERNATING_SLOPES=[]
for (knot,slope) in possible_non_hyperbolic_slopes:
ALT_strings=has_non_hyperbolic_alternating_surgery(knot,return_complete_list=True)
ALT_slopes=[]
for x in ALT_strings:
string=x[1]
string_without_brackets=string[1:-1]
if len(x)==3:
ALT_slopes.append([x[0],tuple(map(int, string_without_brackets.split(', '))),x[2]])
if len(x)==4:
ALT_slopes.append([x[0],tuple(map(int, string_without_brackets.split(', '))),x[2],x[3]])
SEIFERT_FIBERED_ALTERNATING_SLOPES=SEIFERT_FIBERED_ALTERNATING_SLOPES+[x for x in ALT_slopes if x[1]==slope]
UNCLEAR_NON_HYPERBOLIC_SLOPES=[x for x in possible_non_hyperbolic_slopes if x not in [[x[0],x[1]] for x in SEIFERT_FIBERED_ALTERNATING_SLOPES]]
print("--- Time taken: %s seconds ---" % (time.time() - start_time))
--- Time taken: 245.3493902683258 seconds ---
len(SEIFERT_FIBERED_ALTERNATING_SLOPES)
531
SEIFERT_FIBERED_ALTERNATING_SLOPES
[['m016', (-1, 1), 'L(19,7)'], ['m016', (0, 1), 'L(18,5)'], ['m071', (-1, 1), 'L(31,11)'], ['m071', (0, 1), 'L(32,7)'], ['m082', (0, 1), 'L(27,8)'], ['m082', (1, 1), 'SFS [S2: (2,1) (2,1) (5,2)]', 'L8a3'], ['m103', (-1, 1), 'SFS [S2: (2,1) (2,1) (3,8)]', 'L9a16'], ['m103', (0, 1), 'L(43,12)'], ['m118', (-1, 1), 'L(30,11)'], ['m118', (0, 1), 'L(31,12)'], ['m144', (-1, 1), 'SFS [S2: (2,1) (3,1) (5,2)]', 'K9a9'], ['m144', (0, 1), 'L(36,11)'], ['m194', (0, 1), 'L(37,10)'], ['m194', (1, 1), 'SFS [S2: (2,1) (2,1) (7,2)]', 'L9a7'], ['m198', (0, 1), 'SFS [S2: (2,1) (3,1) (4,3)]', 'L9a24'], ['m198', (1, 1), 'L(39,16)'], ['m239', (0, 1), 'L(34,13)'], ['m240', (-1, 1), 'SFS [S2: (2,1) (2,1) (5,4)]', 'L9a12'], ['m240', (1, 0), 'L(37,10)'], ['m270', (1, 0), 'L(45,19)'], ['m270', (1, 1), 'SFS [S2: (2,1) (3,2) (4,3)]', 'L9a23'], ['m276', (1, 0), 'L(50,19)'], ['m276', (1, 1), 'SFS [S2: (2,1) (3,2) (3,5)]', 'K9a5'], ['m281', (0, 1), 'SFS [S2: (2,1) (3,2) (5,2)]', 'K9a4'], ['m281', (1, 1), 'L(46,17)'], ['o9_00133', (-1, 1), 'SFS [S2: (2,1) (3,2) (5,16)]', 'K13a633'], ['o9_00133', (0, 1), 'L(132,25)'], ['o9_00168', (0, 1), 'L(143,25)'], ['o9_00168', (1, 1), 'SFS [S2: (2,1) (3,2) (6,17)]', 'L13a2992'], ['o9_00644', (-1, 1), 'SFS [S2: (2,1) (5,2) (7,1)]', 'K13a646'], ['o9_00644', (0, 1), 'L(72,23)'], ['o9_00797', (-1, 1), 'L(215,49)'], ['o9_00797', (0, 1), 'L(214,49)'], ['o9_00815', (-1, 1), 'L(226,49)'], ['o9_00815', (0, 1), 'L(227,49)'], ['o9_01436', (0, 1), 'SFS [S2: (2,1) (3,1) (16,13)]', 'L13a4220'], ['o9_01436', (1, 1), 'SFS [S2: (2,1) (3,1) (5,22)]', 'K13a666'], ['o9_01496', (-1, 1), 'SFS [S2: (2,1) (4,3) (5,17)]', 'L13a1884'], ['o9_01496', (0, 1), 'SFS [S2: (2,1) (3,1) (19,15)]', 'K13a3215'], ['o9_01584', (0, 1), 'L(219,64)'], ['o9_01621', (0, 1), 'L(229,64)'], ['o9_01680', (1, 0), 'L(211,64)'], ['o9_01680', (1, 1), 'SFS [S2: (2,1) (4,3) (13,10)]', 'L13a2083'], ['o9_01765', (-1, 1), 'SFS [S2: (2,1) (4,3) (15,11)]', 'L13a1850'], ['o9_01765', (1, 0), 'L(237,64)'], ['o9_01953', (0, 1), 'SFS [S2: (3,1) (4,3) (5,6)]', 'K13a4562'], ['o9_01953', (1, 1), 'SFS [S2: (2,1) (6,5) (7,2)]', 'L13a2843'], ['o9_01955', (0, 1), 'SFS [S2: (3,1) (4,3) (6,5)]', 'L13a4298'], ['o9_01955', (1, 1), 'SFS [S2: (2,1) (5,1) (7,9)]', 'K13a1536'], ['o9_02255', (0, 1), 'L(227,84)'], ['o9_02255', (1, 1), 'SFS [S2: (2,1) (2,1) (41,16)]', 'L13a597'], ['o9_02340', (-1, 1), 'SFS [S2: (2,1) (2,1) (33,26)]', 'L13a957'], ['o9_02340', (1, 0), 'L(237,64)'], ['o9_02350', (0, 1), 'L(273,100)'], ['o9_02350', (1, 1), 'SFS [S2: (2,1) (2,1) (49,19)]', 'L13a949'], ['o9_02386', (-1, 1), 'SFS [S2: (2,1) (2,1) (37,29)]', 'L13a500'], ['o9_02386', (1, 0), 'L(263,71)'], ['o9_02655', (0, 1), 'L(196,75)'], ['o9_02696', (0, 1), 'L(209,80)'], ['o9_02706', (-1, 1), 'SFS [S2: (3,2) (3,2) (10,17)]', 'K13a2041'], ['o9_02706', (1, 0), 'L(274,81)'], ['o9_02735', (1, 0), 'L(293,81)'], ['o9_02735', (1, 1), 'SFS [S2: (3,2) (3,2) (11,18)]', 'L13a4183'], ['o9_02772', (-1, 1), 'L(95,41)'], ['o9_02772', (0, 1), 'SFS [S2: (3,1) (3,1) (7,6)]', 'L13a5041'], ['o9_02786', (-1, 1), 'L(98,37)'], ['o9_02794', (0, 1), 'SFS [S2: (3,2) (5,2) (6,1)]', 'K13a2427'], ['o9_02794', (1, 1), 'L(110,41)'], ['o9_03032', (-1, 1), 'SFS [S2: (2,1) (2,1) (7,30)]', 'L13a1210'], ['o9_03032', (0, 1), 'SFS [S2: (3,1) (3,1) (11,9)]', 'K13a3004'], ['o9_03108', (-1, 1), 'L(103,46)'], ['o9_03108', (0, 1), 'SFS [S2: (3,1) (4,1) (6,5)]', 'L13a4297'], ['o9_03118', (-1, 1), 'SFS [S2: (2,1) (3,2) (17,29)]', 'K13a299'], ['o9_03118', (1, 0), 'L(292,111)'], ['o9_03133', (0, 1), 'L(157,36)'], ['o9_03149', (1, 0), 'L(313,119)'], ['o9_03149', (1, 1), 'SFS [S2: (2,1) (3,2) (18,31)]', 'L13a2812'], ['o9_03162', (0, 1), 'L(288,119)'], ['o9_03162', (1, 1), 'SFS [S2: (2,1) (3,2) (31,12)]', 'K13a296'], ['o9_03188', (0, 1), 'L(317,121)'], ['o9_03188', (1, 1), 'SFS [S2: (2,1) (3,2) (34,13)]', 'L13a2823'], ['o9_03288', (1, 0), 'L(158,37)'], ['o9_03288', (1, 1), 'SFS [S2: (2,1) (5,4) (9,4)]', 'K13a3453'], ['o9_03313', (0, 1), 'L(206,63)'], ['o9_03412', (1, 0), 'L(205,61)'], ['o9_03412', (1, 1), 'SFS [S2: (2,1) (5,4) (12,5)]', 'L13a2528'], ['o9_03526', (-1, 1), 'SFS [S2: (2,1) (4,1) (7,6)]', 'L13a2127'], ['o9_03526', (1, 0), 'L(91,16)'], ['o9_03586', (-1, 1), 'SFS [S2: (2,1) (3,1) (9,20)]', 'K13a1584'], ['o9_03586', (0, 1), 'SFS [S2: (3,1) (5,4) (7,3)]', 'L13a5059'], ['o9_03622', (-1, 1), 'SFS [S2: (2,1) (4,3) (9,11)]', 'L13a1604'], ['o9_03622', (0, 1), 'SFS [S2: (3,1) (5,4) (7,4)]', 'K13a4311'], ['o9_03802', (0, 1), 'L(151,45)'], ['o9_03833', (-1, 1), 'SFS [S2: (2,1) (2,1) (11,24)]', 'L13a768'], ['o9_03833', (0, 1), 'SFS [S2: (3,1) (5,2) (6,5)]', 'K13a2317'], ['o9_03932', (1, 0), 'L(135,31)'], ['o9_03932', (1, 1), 'SFS [S2: (2,1) (6,5) (7,2)]', 'L13a2843'], ['o9_04106', (0, 1), 'SFS [S2: (3,1) (3,2) (13,10)]', 'K13a2807'], ['o9_04205', (0, 1), 'SFS [S2: (3,1) (3,2) (14,11)]', 'K13a2110'], ['o9_04245', (0, 1), 'SFS [S2: (2,1) (3,1) (15,26)]', 'K13a2857'], ['o9_04269', (-1, 1), 'SFS [S2: (2,1) (4,1) (11,7)]', 'L12a634'], ['o9_04313', (1, 0), 'L(240,71)'], ['o9_04313', (1, 1), 'SFS [S2: (3,2) (4,3) (7,10)]', 'K13a1458'], ['o9_04431', (1, 0), 'L(267,79)'], ['o9_04431', (1, 1), 'SFS [S2: (3,2) (4,3) (8,11)]', 'L13a3104'], ['o9_04435', (1, 0), 'L(162,35)'], ['o9_04435', (1, 1), 'SFS [S2: (3,2) (4,1) (5,9)]', 'K13a1220'], ['o9_04438', (0, 1), 'SFS [S2: (2,1) (3,1) (18,31)]', 'L13a2960'], ['o9_05021', (0, 1), 'SFS [S2: (3,1) (3,1) (7,19)]', 'K13a2832'], ['o9_05177', (0, 1), 'SFS [S2: (3,1) (4,3) (7,12)]', 'K13a1941'], ['o9_05229', (0, 1), 'SFS [S2: (3,1) (4,3) (9,7)]', 'K13a2122'], ['o9_05357', (0, 1), 'SFS [S2: (2,1) (3,1) (10,27)]', 'L13a2981'], ['o9_05426', (-1, 1), 'SFS [S2: (2,1) (5,4) (13,5)]', 'K13a817'], ['o9_05426', (0, 1), 'SFS [S2: (3,2) (4,1) (8,11)]', 'L13a3443'], ['o9_05483', (-1, 1), 'SFS [S2: (2,1) (4,1) (13,18)]', 'L13a2133'], ['o9_05483', (0, 1), 'SFS [S2: (3,2) (5,4) (8,3)]', 'K13a1432'], ['o9_05562', (0, 1), 'SFS [S2: (3,1) (3,1) (11,19)]', 'K13a2841'], ['o9_05618', (0, 1), 'SFS [S2: (3,1) (5,3) (9,7)]', 'K13a2002'], ['o9_05860', (-1, 1), 'SFS [S2: (2,1) (5,2) (18,7)]', 'L13a2837'], ['o9_05860', (0, 1), 'SFS [S2: (2,1) (3,2) (11,26)]', 'K13a523'], ['o9_05970', (0, 1), 'SFS [S2: (3,1) (3,2) (11,19)]', 'L13a4371'], ['o9_06060', (0, 1), 'SFS [S2: (2,1) (2,1) (19,31)]', 'L12a226'], ['o9_06128', (-1, 1), 'SFS [S2: (2,1) (5,3) (18,7)]', 'L13a2838'], ['o9_06128', (0, 1), 'SFS [S2: (3,2) (3,2) (11,15)]', 'K13a1818'], ['o9_06154', (0, 1), 'SFS [S2: (2,1) (3,2) (19,12)]', 'K12a83'], ['o9_06248', (-1, 1), 'SFS [S2: (2,1) (2,1) (21,50)]', 'L13a1153'], ['o9_06248', (0, 1), 'SFS [S2: (3,2) (5,2) (13,5)]', 'K13a788'], ['o9_06301', (-1, 1), 'SFS [S2: (2,1) (3,2) (21,29)]', 'K13a332'], ['o9_06301', (0, 1), 'SFS [S2: (3,2) (5,3) (13,5)]', 'L13a4461'], ['o9_07790', (-1, 1), 'SFS [S2: (2,1) (6,5) (7,3)]', 'L13a2991'], ['o9_07790', (0, 1), 'SFS [S2: (2,1) (5,2) (11,5)]', 'K13a653'], ['o9_07893', (0, 1), 'L(199,55)'], ['o9_07943', (0, 1), 'SFS [S2: (3,1) (3,1) (4,15)]', 'K13a4569'], ['o9_07943', (1, 0), 'SFS [S2: (2,1) (5,4) (10,3)]', 'L13a2937'], ['o9_07945', (0, 1), 'L(233,89)'], ['o9_08006', (-1, 1), 'SFS [S2: (2,1) (7,3) (9,7)]', 'K13a1044'], ['o9_08006', (0, 1), 'SFS [S2: (2,1) (5,2) (16,7)]', 'L13a2240'], ['o9_08042', (0, 1), 'SFS [S2: (3,1) (4,3) (4,11)]', 'L13a3474'], ['o9_08042', (1, 0), 'SFS [S2: (2,1) (5,4) (11,4)]', 'K13a3452'], ['o9_08224', (1, 1), 'SFS [S2: (3,1) (3,2) (5,13)]', 'L12a1239'], ['o9_08302', (1, 1), 'SFS [S2: (3,2) (4,3) (5,8)]', 'K12a219'], ['o9_08477', (0, 1), 'SFS [S2: (3,1) (5,1) (7,3)]', 'K13a4871'], ['o9_08477', (1, 1), 'SFS [S2: (2,1) (2,1) (21,4)]', 'L13a699'], ['o9_08647', (1, 0), 'L(271,75)'], ['o9_08765', (-1, 1), 'SFS [S2: (2,1) (3,1) (11,19)]', 'K12a258'], ['o9_08771', (1, 0), 'L(317,121)'], ['o9_08776', (0, 1), 'SFS [S2: (3,2) (4,3) (11,7)]', 'K13a1209'], ['o9_08776', (1, 0), 'SFS [S2: (2,1) (2,1) (25,43)]', 'L13a1062'], ['o9_08828', (0, 1), 'L(239,70)'], ['o9_08831', (-1, 1), 'SFS [S2: (2,1) (4,3) (11,8)]', 'L12a595'], ['o9_08852', (0, 1), 'SFS [S2: (3,2) (4,3) (13,8)]', 'K13a1205'], ['o9_08852', (1, 0), 'SFS [S2: (2,1) (2,1) (29,50)]', 'L13a996'], ['o9_08875', (0, 1), 'L(268,99)'], ['o9_09213', (0, 1), 'L(150,59)'], ['o9_09465', (-1, 1), 'SFS [S2: (3,2) (5,2) (5,9)]', 'K13a1850'], ['o9_09465', (0, 1), 'SFS [S2: (2,1) (5,2) (14,9)]', 'L13a2859'], ['o9_09808', (-1, 1), 'SFS [S2: (3,2) (5,2) (7,12)]', 'L13a3286'], ['o9_09808', (0, 1), 'SFS [S2: (2,1) (5,2) (19,12)]', 'K13a565'], ['o9_10696', (0, 1), 'SFS [S2: (3,1) (4,1) (6,5)]', 'L13a4297'], ['o9_10696', (1, 0), 'L(101,21)'], ['o9_11248', (1, 0), 'SFS [S2: (2,1) (7,3) (10,3)]', 'L13a2940'], ['o9_11248', (1, 1), 'SFS [S2: (2,1) (7,3) (9,4)]', 'K13a3593'], ['o9_11467', (0, 1), 'SFS [S2: (3,2) (4,3) (12,7)]', 'L13a3188'], ['o9_11467', (1, 0), 'SFS [S2: (2,1) (7,5) (7,12)]', 'K13a809'], ['o9_11560', (0, 1), 'SFS [S2: (3,2) (4,3) (13,8)]', 'K13a1205'], ['o9_11560', (1, 0), 'SFS [S2: (2,1) (7,5) (8,13)]', 'L13a1896'], ['o9_11570', (0, 1), 'SFS [S2: (3,1) (5,2) (9,4)]', 'K13a2804'], ['o9_11570', (1, 1), 'SFS [S2: (2,1) (5,4) (10,3)]', 'L13a2937'], ['o9_11685', (1, 1), 'SFS [S2: (2,1) (3,1) (14,11)]', 'L12a872'], ['o9_11795', (-1, 1), 'SFS [S2: (2,1) (2,1) (17,14)]', 'L12a326'], ['o9_11845', (-1, 1), 'SFS [S2: (3,1) (5,3) (5,4)]', 'L12a1323'], ['o9_11999', (1, 0), 'L(253,74)'], ['o9_12144', (0, 1), 'SFS [S2: (3,1) (4,3) (7,10)]', 'K13a4563'], ['o9_12144', (1, 0), 'SFS [S2: (2,1) (4,3) (13,10)]', 'L13a2083'], ['o9_12230', (0, 1), 'SFS [S2: (4,3) (4,3) (7,4)]', 'L13a3468'], ['o9_12230', (1, 0), 'SFS [S2: (2,1) (3,1) (15,26)]', 'K13a2857'], ['o9_12412', (1, 1), 'SFS [S2: (2,1) (3,2) (14,11)]', 'L12a870'], ['o9_12459', (1, 0), 'L(148,41)'], ['o9_12519', (0, 1), 'L(130,51)'], ['o9_12693', (-1, 1), 'SFS [S2: (2,1) (3,1) (16,5)]', 'L13a4353'], ['o9_12693', (0, 1), 'SFS [S2: (3,1) (4,1) (9,4)]', 'K13a4273'], ['o9_12736', (0, 1), 'SFS [S2: (3,1) (3,2) (11,9)]', 'L13a3633'], ['o9_12736', (1, 0), 'SFS [S2: (2,1) (5,4) (7,9)]', 'K13a1390'], ['o9_12757', (0, 1), 'L(145,59)'], ['o9_12873', (0, 1), 'L(261,100)'], ['o9_12892', (-1, 1), 'SFS [S2: (3,1) (3,2) (7,12)]', 'K12a524'], ['o9_12919', (-1, 1), 'SFS [S2: (4,3) (4,3) (5,3)]', 'L12a962'], ['o9_12971', (0, 1), 'L(153,55)'], ['o9_13052', (1, 0), 'L(172,39)'], ['o9_13056', (0, 1), 'SFS [S2: (3,2) (5,4) (8,3)]', 'K13a1432'], ['o9_13056', (1, 0), 'SFS [S2: (2,1) (3,1) (14,25)]', 'L13a2954'], ['o9_13125', (1, 0), 'L(177,49)'], ['o9_13182', (-1, 1), 'SFS [S2: (2,1) (4,3) (9,7)]', 'L12a492'], ['o9_13188', (0, 1), 'L(171,53)'], ['o9_13400', (-1, 1), 'SFS [S2: (3,1) (5,2) (5,9)]', 'L13a4477'], ['o9_13400', (0, 1), 'SFS [S2: (2,1) (7,4) (9,4)]', 'K13a3456'], ['o9_13403', (-1, 1), 'SFS [S2: (3,2) (3,2) (7,12)]', 'L12a932'], ['o9_13433', (0, 1), 'L(209,80)'], ['o9_13508', (0, 1), 'SFS [S2: (4,3) (4,3) (5,7)]', 'L13a3090'], ['o9_13508', (1, 0), 'SFS [S2: (2,1) (7,4) (9,7)]', 'K13a1042'], ['o9_13537', (-1, 1), 'SFS [S2: (4,3) (5,3) (5,3)]', 'K12a215'], ['o9_13604', (-1, 1), 'SFS [S2: (2,1) (4,3) (9,11)]', 'L13a1604'], ['o9_13604', (0, 1), 'SFS [S2: (4,1) (5,3) (7,3)]', 'K13a878'], ['o9_13639', (0, 1), 'SFS [S2: (2,1) (3,2) (17,10)]', 'K12a145'], ['o9_13649', (1, 1), 'SFS [S2: (2,1) (3,2) (9,16)]', 'K12a81'], ['o9_13666', (1, 0), 'L(191,56)'], ['o9_13720', (0, 1), 'SFS [S2: (3,1) (3,2) (19,8)]', 'K13a2004'], ['o9_13952', (0, 1), 'L(229,94)'], ['o9_14018', (0, 1), 'SFS [S2: (4,3) (5,2) (5,8)]', 'K13a759'], ['o9_14018', (1, 0), 'SFS [S2: (2,1) (8,5) (9,7)]', 'L13a1624'], ['o9_14079', (-1, 1), 'SFS [S2: (3,2) (4,3) (7,9)]', 'K13a937'], ['o9_14079', (0, 1), 'SFS [S2: (3,1) (5,2) (11,7)]', 'L13a4350'], ['o9_14136', (0, 1), 'SFS [S2: (3,1) (5,2) (6,5)]', 'K13a2317'], ['o9_14136', (1, 0), 'SFS [S2: (2,1) (4,1) (5,14)]', 'L13a2143'], ['o9_14376', (0, 1), 'SFS [S2: (2,1) (3,1) (19,27)]', 'K13a1572'], ['o9_14599', (-1, 1), 'SFS [S2: (4,3) (5,2) (5,7)]', 'K13a1248'], ['o9_14599', (0, 1), 'SFS [S2: (2,1) (7,3) (12,7)]', 'L13a2383'], ['o9_14716', (0, 1), 'L(196,55)'], ['o9_14831', (-1, 1), 'L(79,28)'], ['o9_14974', (0, 1), 'SFS [S2: (3,2) (5,2) (9,4)]', 'L13a3322'], ['o9_15633', (0, 1), 'SFS [S2: (2,1) (5,3) (13,8)]', 'K12a17'], ['o9_15997', (0, 1), 'SFS [S2: (3,2) (5,2) (11,7)]', 'K13a2033'], ['o9_16065', (0, 1), 'SFS [S2: (2,1) (5,2) (13,21)]', 'K13a581'], ['o9_16141', (0, 1), 'SFS [S2: (2,1) (5,3) (12,17)]', 'L13a2527'], ['o9_16157', (0, 1), 'SFS [S2: (3,1) (5,2) (8,13)]', 'K13a1470'], ['o9_16181', (0, 1), 'SFS [S2: (2,1) (5,2) (12,17)]', 'L13a2226'], ['o9_16319', (0, 1), 'SFS [S2: (4,3) (5,2) (8,5)]', 'L13a3098'], ['o9_16356', (0, 1), 'SFS [S2: (4,3) (5,2) (7,3)]', 'K13a1469'], ['o9_16527', (0, 1), 'SFS [S2: (3,1) (5,2) (7,10)]', 'K13a3098'], ['o9_16642', (0, 1), 'SFS [S2: (3,2) (5,3) (12,5)]', 'K13a769'], ['o9_16748', (0, 1), 'SFS [S2: (3,1) (5,3) (8,5)]', 'K12a220'], ['o9_16920', (-1, 1), 'SFS [S2: (2,1) (3,2) (5,13)]', 'K11a11'], ['o9_17450', (-1, 1), 'SFS [S2: (3,2) (4,3) (7,5)]', 'K12a275'], ['o9_18007', (0, 1), 'L(161,45)'], ['o9_18209', (0, 1), 'L(182,53)'], ['o9_18813', (0, 1), 'SFS [S2: (2,1) (3,2) (13,8)]', 'K11a32'], ['o9_19130', (0, 1), 'SFS [S2: (2,1) (3,2) (11,7)]', 'K11a34'], ['o9_20219', (0, 1), 'SFS [S2: (2,1) (2,1) (29,18)]', 'L12a331'], ['o9_21893', (1, 0), 'L(93,25)'], ['o9_21918', (0, 1), 'SFS [S2: (3,1) (3,2) (8,3)]', 'K11a108'], ['o9_22129', (0, 1), 'L(121,35)'], ['o9_22477', (0, 1), 'L(97,35)'], ['o9_22607', (0, 1), 'SFS [S2: (2,1) (4,1) (13,4)]', 'L13a1949'], ['o9_22607', (1, 1), 'SFS [S2: (3,1) (3,1) (11,5)]', 'K13a4839'], ['o9_22663', (-1, 1), 'SFS [S2: (3,2) (3,2) (8,5)]', 'K11a100'], ['o9_22698', (0, 1), 'SFS [S2: (2,1) (2,1) (13,34)]', 'L12a367'], ['o9_22925', (0, 1), 'SFS [S2: (2,1) (5,2) (8,5)]', 'L11a157'], ['o9_23023', (0, 1), 'SFS [S2: (2,1) (3,2) (13,21)]', 'K12a99'], ['o9_23263', (0, 1), 'SFS [S2: (2,1) (7,3) (9,4)]', 'K13a3593'], ['o9_23660', (0, 1), 'SFS [S2: (2,1) (8,3) (9,4)]', 'L13a1894'], ['o9_23955', (0, 1), 'SFS [S2: (3,1) (4,3) (10,3)]', 'L13a4275'], ['o9_23961', (1, 1), 'SFS [S2: (2,1) (3,1) (7,24)]', 'K13a3136'], ['o9_23977', (0, 1), 'SFS [S2: (2,1) (7,3) (8,5)]', 'L12a626'], ['o9_24149', (0, 1), 'SFS [S2: (3,1) (3,1) (10,13)]', 'K13a4830'], ['o9_24183', (1, 0), 'SFS [S2: (2,1) (2,1) (31,44)]', 'L13a1362'], ['o9_24534', (1, 0), 'L(133,30)'], ['o9_24592', (0, 1), 'SFS [S2: (2,1) (3,2) (11,3)]', 'K11a33'], ['o9_24886', (-1, 1), 'SFS [S2: (3,2) (7,3) (8,5)]', 'K13a1227'], ['o9_24889', (0, 1), 'SFS [S2: (2,1) (7,3) (7,10)]', 'K13a3134'], ['o9_25595', (0, 1), 'L(139,42)'], ['o9_26791', (0, 1), 'L(172,63)'], ['o9_27155', (0, 1), 'L(161,61)'], ['o9_27261', (0, 1), 'SFS [S2: (2,1) (2,1) (29,21)]', 'L12a188'], ['o9_27392', (0, 1), 'SFS [S2: (2,1) (3,2) (23,7)]', 'K13a238'], ['o9_27480', (0, 1), 'SFS [S2: (2,1) (5,2) (13,4)]', 'K13a578'], ['o9_27737', (1, 1), 'SFS [S2: (2,1) (3,1) (13,16)]', 'K13a3111'], ['o9_28113', (1, 1), 'SFS [S2: (3,2) (3,2) (13,3)]', 'K13a2882'], ['o9_28153', (0, 1), 'SFS [S2: (2,1) (5,3) (7,12)]', 'K12a21'], ['o9_28529', (1, 0), 'SFS [S2: (2,1) (5,3) (16,7)]', 'L13a2219'], ['o9_28592', (-1, 1), 'SFS [S2: (3,2) (5,2) (9,4)]', 'L13a3322'], ['o9_28746', (0, 1), 'SFS [S2: (2,1) (3,2) (17,12)]', 'K12a82'], ['o9_28810', (0, 1), 'SFS [S2: (3,2) (5,3) (7,5)]', 'L12a1072'], ['o9_29246', (0, 1), 'SFS [S2: (2,1) (2,1) (27,35)]', 'L13a710'], ['o9_29436', (1, 1), 'SFS [S2: (4,3) (5,3) (7,3)]', 'K13a842'], ['o9_30375', (0, 1), 'SFS [S2: (2,1) (5,2) (8,13)]', 'L12a516'], ['o9_30790', (1, 1), 'SFS [S2: (3,2) (5,2) (7,10)]', 'L13a4191'], ['o9_32257', (0, 1), 'SFS [S2: (2,1) (3,1) (11,7)]', 'K11a257'], ['o9_35682', (0, 1), 'SFS [S2: (2,1) (2,1) (19,8)]', 'L11a89'], ['o9_35772', (0, 1), 'SFS [S2: (2,1) (2,1) (17,10)]', 'L11a109'], ['s042', (0, 1), 'L(57,16)'], ['s042', (1, 1), 'SFS [S2: (2,1) (2,1) (3,11)]', 'L10a41'], ['s068', (-1, 1), 'SFS [S2: (2,1) (3,2) (3,8)]', 'K10a17'], ['s068', (0, 1), 'L(68,19)'], ['s086', (-1, 1), 'SFS [S2: (2,1) (4,1) (5,2)]', 'L10a67'], ['s086', (0, 1), 'L(45,14)'], ['s104', (-1, 1), 'L(68,19)'], ['s104', (0, 1), 'L(67,18)'], ['s114', (-1, 1), 'L(79,29)'], ['s114', (0, 1), 'L(80,31)'], ['s294', (0, 1), 'L(47,13)'], ['s301', (0, 1), 'SFS [S2: (2,1) (3,1) (4,7)]', 'L10a72'], ['s301', (1, 1), 'SFS [S2: (2,1) (3,2) (7,2)]', 'K10a9'], ['s308', (-1, 1), 'SFS [S2: (2,1) (2,1) (7,9)]', 'L10a19'], ['s308', (0, 1), 'SFS [S2: (3,1) (3,2) (4,3)]', 'K10a42'], ['s336', (-1, 1), 'L(50,19)'], ['s344', (1, 0), 'L(63,17)'], ['s344', (1, 1), 'SFS [S2: (2,1) (2,1) (9,7)]', 'L10a10'], ['s346', (0, 1), 'L(73,27)'], ['s346', (1, 1), 'SFS [S2: (2,1) (2,1) (13,5)]', 'L10a29'], ['s367', (0, 1), 'SFS [S2: (3,1) (3,2) (5,2)]', 'K10a37'], ['s367', (1, 1), 'L(62,23)'], ['s369', (-1, 1), 'SFS [S2: (2,1) (3,2) (4,7)]', 'L10a59'], ['s369', (1, 0), 'L(71,21)'], ['s407', (-1, 1), 'SFS [S2: (2,1) (3,2) (8,3)]', 'L10a60'], ['s407', (0, 1), 'L(75,29)'], ['s582', (-1, 1), 'SFS [S2: (2,1) (2,1) (9,4)]', 'L10a40'], ['s582', (0, 1), 'SFS [S2: (2,1) (3,1) (7,3)]', 'K10a82'], ['s665', (0, 1), 'L(75,29)'], ['s684', (0, 1), 'L(55,21)'], ['s769', (0, 1), 'SFS [S2: (3,2) (3,2) (4,3)]', 'K10a40'], ['s769', (1, 0), 'SFS [S2: (2,1) (2,1) (7,12)]', 'L10a30'], ['s800', (0, 1), 'L(70,29)'], ['t00110', (0, 1), 'L(107,25)'], ['t00110', (1, 1), 'SFS [S2: (2,1) (3,2) (4,13)]', 'L12a647'], ['t00146', (-1, 1), 'SFS [S2: (2,1) (3,2) (5,14)]', 'K12a158'], ['t00146', (0, 1), 'L(118,25)'], ['t00324', (-1, 1), 'SFS [S2: (2,1) (5,2) (6,1)]', 'L12a896'], ['t00324', (0, 1), 'L(63,20)'], ['t00423', (-1, 1), 'L(166,49)'], ['t00423', (0, 1), 'L(165,49)'], ['t00434', (0, 1), 'L(178,49)'], ['t00434', (1, 1), 'L(177,49)'], ['t00729', (-1, 1), 'SFS [S2: (2,1) (2,1) (5,22)]', 'L12a410'], ['t00729', (0, 1), 'SFS [S2: (2,1) (3,1) (11,9)]', 'K12a591'], ['t00787', (0, 1), 'SFS [S2: (2,1) (3,1) (14,11)]', 'L12a872'], ['t00787', (1, 1), 'SFS [S2: (2,1) (3,2) (5,17)]', 'K12a118'], ['t00826', (0, 1), 'L(155,46)'], ['t00855', (0, 1), 'L(165,49)'], ['t00873', (1, 0), 'L(147,62)'], ['t00873', (1, 1), 'SFS [S2: (2,1) (4,3) (9,7)]', 'L12a492'], ['t00932', (-1, 1), 'SFS [S2: (2,1) (4,3) (11,8)]', 'L12a595'], ['t00932', (1, 0), 'L(173,64)'], ['t01033', (0, 1), 'SFS [S2: (3,1) (4,1) (4,7)]', 'L12a1058'], ['t01033', (1, 1), 'SFS [S2: (2,1) (5,4) (7,2)]', 'K12a420'], ['t01037', (-1, 1), 'SFS [S2: (2,1) (4,1) (7,9)]', 'L12a530'], ['t01037', (0, 1), 'SFS [S2: (3,1) (4,3) (5,4)]', 'K12a1028'], ['t01125', (0, 1), 'L(127,27)'], ['t01125', (1, 1), 'SFS [S2: (2,1) (2,1) (23,9)]', 'L12a339'], ['t01216', (1, 0), 'L(137,37)'], ['t01216', (1, 1), 'SFS [S2: (2,1) (2,1) (19,15)]', 'L12a187'], ['t01268', (0, 1), 'L(173,64)'], ['t01268', (1, 1), 'SFS [S2: (2,1) (2,1) (31,12)]', 'L12a221'], ['t01292', (1, 0), 'L(163,44)'], ['t01292', (1, 1), 'SFS [S2: (2,1) (2,1) (23,18)]', 'L12a327'], ['t01318', (0, 1), 'L(115,34)'], ['t01368', (0, 1), 'L(128,47)'], ['t01409', (1, 0), 'L(193,81)'], ['t01409', (1, 1), 'SFS [S2: (3,2) (3,2) (7,12)]', 'L12a932'], ['t01422', (-1, 1), 'L(82,31)'], ['t01424', (-1, 1), 'SFS [S2: (3,2) (3,2) (8,13)]', 'K12a281'], ['t01424', (1, 0), 'L(212,81)'], ['t01440', (0, 1), 'SFS [S2: (3,2) (5,1) (5,2)]', 'K12a619'], ['t01440', (1, 1), 'L(94,35)'], ['t01598', (-1, 1), 'SFS [S2: (2,1) (3,2) (10,17)]', 'L12a887'], ['t01598', (1, 0), 'L(171,50)'], ['t01636', (0, 1), 'L(167,46)'], ['t01636', (1, 1), 'SFS [S2: (2,1) (3,2) (18,7)]', 'L12a888'], ['t01646', (-1, 1), 'SFS [S2: (2,1) (3,2) (11,19)]', 'K12a98'], ['t01646', (1, 0), 'L(192,71)'], ['t01690', (0, 1), 'L(196,75)'], ['t01690', (1, 1), 'SFS [S2: (2,1) (3,2) (21,8)]', 'K12a95'], ['t01757', (-1, 1), 'SFS [S2: (2,1) (2,1) (9,20)]', 'L12a269'], ['t01757', (0, 1), 'SFS [S2: (3,1) (5,2) (5,4)]', 'K12a752'], ['t01834', (-1, 1), 'SFS [S2: (2,1) (3,2) (9,11)]', 'K12a62'], ['t01834', (0, 1), 'SFS [S2: (3,1) (5,3) (5,4)]', 'L12a1323'], ['t01850', (1, 0), 'L(108,23)'], ['t01850', (1, 1), 'SFS [S2: (2,1) (3,1) (11,9)]', 'K12a591'], ['t01863', (0, 1), 'L(133,36)'], ['t01863', (1, 1), 'SFS [S2: (2,1) (3,1) (18,7)]', 'L12a889'], ['t01949', (1, 0), 'L(127,29)'], ['t01949', (1, 1), 'SFS [S2: (3,1) (3,2) (5,9)]', 'L12a1292'], ['t02099', (-1, 1), 'SFS [S2: (2,1) (3,1) (11,7)]', 'K11a257'], ['t02104', (0, 1), 'L(119,50)'], ['t02238', (0, 1), 'SFS [S2: (2,1) (3,1) (7,19)]', 'K12a238'], ['t02378', (-1, 1), 'SFS [S2: (3,1) (3,2) (13,5)]', 'L12a1299'], ['t02378', (0, 1), 'L(163,62)'], ['t02398', (0, 1), 'SFS [S2: (3,1) (3,2) (7,12)]', 'K12a524'], ['t02404', (0, 1), 'SFS [S2: (2,1) (2,1) (19,12)]', 'L11a62'], ['t02470', (0, 1), 'SFS [S2: (2,1) (3,2) (11,15)]', 'K12a112'], ['t02470', (1, 1), 'SFS [S2: (2,1) (3,2) (18,7)]', 'L12a888'], ['t02537', (-1, 1), 'SFS [S2: (2,1) (4,3) (13,5)]', 'L12a599'], ['t02537', (0, 1), 'SFS [S2: (3,1) (3,2) (8,11)]', 'K12a445'], ['t02567', (-1, 1), 'SFS [S2: (2,1) (3,1) (13,18)]', 'K12a240'], ['t02567', (0, 1), 'SFS [S2: (3,2) (4,3) (8,3)]', 'L12a964'], ['t02639', (0, 1), 'SFS [S2: (3,2) (3,2) (13,5)]', 'K12a229'], ['t02639', (1, 1), 'SFS [S2: (2,1) (2,1) (21,29)]', 'L12a256'], ['t03566', (0, 1), 'SFS [S2: (2,1) (3,1) (4,15)]', 'L12a678'], ['t03566', (1, 0), 'SFS [S2: (2,1) (5,4) (7,2)]', 'K12a420'], ['t03607', (0, 1), 'SFS [S2: (2,1) (3,1) (19,8)]', 'K12a436'], ['t03607', (1, 1), 'SFS [S2: (2,1) (2,1) (25,11)]', 'L12a350'], ['t03709', (0, 1), 'SFS [S2: (3,1) (3,2) (4,11)]', 'K12a376'], ['t03709', (1, 0), 'SFS [S2: (2,1) (5,4) (8,3)]', 'L12a615'], ['t03713', (-1, 1), 'SFS [S2: (2,1) (3,2) (5,13)]', 'K11a11'], ['t03781', (0, 1), 'SFS [S2: (3,1) (4,1) (7,3)]', 'K12a1243'], ['t03781', (1, 1), 'SFS [S2: (2,1) (2,1) (17,4)]', 'L12a289'], ['t03864', (1, 1), 'SFS [S2: (3,2) (3,2) (5,8)]', 'L11a268'], ['t03956', (-1, 1), 'SFS [S2: (2,1) (5,3) (5,4)]', 'K11a7'], ['t03979', (0, 1), 'L(115,34)'], ['t04003', (-1, 1), 'SFS [S2: (2,1) (2,1) (11,19)]', 'L11a77'], ['t04019', (-1, 1), 'SFS [S2: (2,1) (3,1) (11,5)]', 'K12a843'], ['t04019', (0, 1), 'SFS [S2: (2,1) (4,1) (9,4)]', 'L12a646'], ['t04102', (1, 1), 'SFS [S2: (2,1) (3,2) (11,8)]', 'K11a31'], ['t04180', (0, 1), 'L(125,49)'], ['t04228', (0, 1), 'SFS [S2: (2,1) (4,3) (7,10)]', 'L12a676'], ['t04228', (1, 0), 'SFS [S2: (2,1) (3,2) (13,10)]', 'K12a144'], ['t04244', (1, 0), 'L(181,70)'], ['t04382', (0, 1), 'L(157,46)'], ['t04721', (1, 0), 'L(147,41)'], ['t05118', (-1, 1), 'SFS [S2: (2,1) (5,2) (7,12)]', 'K12a175'], ['t05118', (0, 1), 'SFS [S2: (2,1) (5,3) (12,5)]', 'L12a702'], ['t05239', (0, 1), 'SFS [S2: (3,2) (4,3) (7,4)]', 'K12a368'], ['t05239', (1, 0), 'SFS [S2: (2,1) (4,3) (7,12)]', 'L12a600'], ['t05390', (-1, 1), 'SFS [S2: (2,1) (4,3) (7,5)]', 'L11a151'], ['t05425', (0, 1), 'L(117,43)'], ['t05426', (0, 1), 'SFS [S2: (3,2) (4,3) (8,5)]', 'L12a972'], ['t05426', (1, 0), 'SFS [S2: (2,1) (5,3) (7,12)]', 'K12a21'], ['t05538', (0, 1), 'L(105,41)'], ['t05564', (0, 1), 'L(135,41)'], ['t05578', (0, 1), 'SFS [S2: (4,3) (4,3) (5,3)]', 'L12a962'], ['t05578', (1, 0), 'SFS [S2: (2,1) (3,1) (11,19)]', 'K12a258'], ['t05658', (1, 0), 'L(112,31)'], ['t05663', (0, 1), 'SFS [S2: (3,2) (5,2) (5,4)]', 'L12a1105'], ['t05663', (1, 0), 'SFS [S2: (2,1) (3,1) (9,16)]', 'K12a329'], ['t05674', (-1, 1), 'SFS [S2: (2,1) (4,3) (7,9)]', 'L12a501'], ['t05674', (0, 1), 'SFS [S2: (3,1) (5,3) (7,3)]', 'K12a749'], ['t05695', (0, 1), 'L(120,49)'], ['t06001', (1, 0), 'L(133,39)'], ['t06440', (0, 1), 'SFS [S2: (3,2) (5,2) (7,3)]', 'K12a568'], ['t06463', (0, 1), 'SFS [S2: (2,1) (5,2) (8,13)]', 'L12a516'], ['t06525', (0, 1), 'SFS [S2: (2,1) (5,3) (8,5)]', 'L11a159'], ['t06570', (0, 1), 'SFS [S2: (2,1) (5,2) (7,10)]', 'K12a194'], ['t06605', (0, 1), 'SFS [S2: (3,2) (5,2) (8,5)]', 'K12a263'], ['t07348', (0, 1), 'SFS [S2: (2,1) (3,2) (8,5)]', 'L10a61'], ['t08111', (0, 1), 'SFS [S2: (2,1) (3,2) (8,3)]', 'L10a60'], ['t08201', (0, 1), 'SFS [S2: (3,2) (3,2) (5,3)]', 'K10a38'], ['t08267', (0, 1), 'SFS [S2: (2,1) (2,1) (21,13)]', 'L11a55'], ['t08403', (0, 1), 'L(107,41)'], ['t09016', (0, 1), 'SFS [S2: (2,1) (2,1) (13,21)]', 'L11a78'], ['t09267', (0, 1), 'SFS [S2: (3,1) (3,2) (10,3)]', 'K12a577'], ['t09313', (0, 1), 'SFS [S2: (2,1) (3,2) (16,7)]', 'L12a718'], ['t09455', (0, 1), 'SFS [S2: (2,1) (3,1) (10,13)]', 'L12a926'], ['t09580', (0, 1), 'L(116,45)'], ['t09704', (0, 1), 'SFS [S2: (2,1) (2,1) (19,27)]', 'L12a292'], ['t09852', (0, 1), 'SFS [S2: (2,1) (2,1) (13,5)]', 'L10a29'], ['t10230', (0, 1), 'SFS [S2: (2,1) (2,1) (11,7)]', 'L10a28'], ['t10462', (0, 1), 'SFS [S2: (2,1) (5,3) (7,5)]', 'K11a1'], ['t10643', (1, 1), 'SFS [S2: (3,2) (3,2) (10,3)]', 'K12a648'], ['t10681', (0, 1), 'SFS [S2: (2,1) (3,2) (12,17)]', 'L12a709'], ['t10985', (-1, 1), 'SFS [S2: (3,2) (5,3) (7,3)]', 'L12a1286'], ['v0082', (0, 1), 'L(82,23)'], ['v0082', (1, 1), 'SFS [S2: (2,1) (3,1) (3,11)]', 'K11a58'], ['v0114', (0, 1), 'L(93,25)'], ['v0114', (1, 1), 'SFS [S2: (2,1) (3,2) (4,11)]', 'L11a190'], ['v0165', (0, 1), 'L(54,17)'], ['v0165', (1, 1), 'SFS [S2: (2,1) (5,1) (5,2)]', 'K11a62'], ['v0220', (0, 1), 'L(116,45)'], ['v0220', (1, 1), 'L(117,43)'], ['v0223', (0, 1), 'L(129,49)'], ['v0223', (1, 1), 'L(128,47)'], ['v0330', (0, 1), 'SFS [S2: (2,1) (3,1) (6,5)]', 'L11a274'], ['v0330', (1, 1), 'L(59,24)'], ['v0398', (0, 1), 'SFS [S2: (2,1) (3,1) (9,7)]', 'K11a118'], ['v0398', (1, 1), 'SFS [S2: (2,1) (2,1) (5,17)]', 'L11a94'], ['v0407', (0, 1), 'L(91,27)'], ['v0424', (1, 0), 'L(83,19)'], ['v0424', (1, 1), 'SFS [S2: (2,1) (4,3) (5,4)]', 'L11a186'], ['v0434', (0, 1), 'L(101,30)'], ['v0497', (1, 0), 'L(109,45)'], ['v0497', (1, 1), 'SFS [S2: (2,1) (4,3) (7,5)]', 'L11a151'], ['v0554', (0, 1), 'SFS [S2: (3,1) (3,1) (5,4)]', 'L11a383'], ['v0554', (1, 1), 'L(67,29)'], ['v0570', (0, 1), 'SFS [S2: (3,1) (3,1) (4,7)]', 'K11a340'], ['v0570', (1, 1), 'SFS [S2: (2,1) (4,3) (7,2)]', 'L11a154'], ['v0573', (-1, 1), 'SFS [S2: (2,1) (3,1) (7,9)]', 'K11a153'], ['v0573', (0, 1), 'SFS [S2: (3,1) (4,3) (4,3)]', 'L11a296'], ['v0707', (-1, 1), 'L(66,25)'], ['v0709', (1, 0), 'L(61,13)'], ['v0709', (1, 1), 'SFS [S2: (2,1) (3,1) (6,5)]', 'L11a274'], ['v0715', (-1, 1), 'SFS [S2: (3,2) (3,2) (4,7)]', 'K11a107'], ['v0715', (1, 0), 'L(112,31)'], ['v0740', (0, 1), 'SFS [S2: (3,2) (4,1) (5,2)]', 'K11a133'], ['v0740', (1, 1), 'L(78,29)'], ['v0741', (1, 0), 'L(131,50)'], ['v0741', (1, 1), 'SFS [S2: (3,2) (3,2) (5,8)]', 'L11a268'], ['v0759', (0, 1), 'L(85,26)'], ['v0765', (-1, 1), 'SFS [S2: (2,1) (2,1) (9,11)]', 'L11a43'], ['v0765', (0, 1), 'SFS [S2: (3,1) (3,2) (5,4)]', 'K11a201'], ['v0847', (-1, 1), 'SFS [S2: (2,1) (5,2) (5,4)]', 'K11a60'], ['v0847', (1, 0), 'L(84,25)'], ['v0912', (1, 0), 'L(98,27)'], ['v0912', (1, 1), 'SFS [S2: (3,1) (3,2) (4,7)]', 'K11a139'], ['v0939', (0, 1), 'SFS [S2: (2,1) (2,1) (11,7)]', 'L10a28'], ['v0945', (0, 1), 'SFS [S2: (2,1) (3,1) (7,12)]', 'K11a94'], ['v1077', (0, 1), 'SFS [S2: (2,1) (3,2) (8,11)]', 'L11a160'], ['v1077', (1, 1), 'SFS [S2: (2,1) (3,2) (13,5)]', 'K11a35'], ['v1109', (-1, 1), 'SFS [S2: (2,1) (2,1) (13,18)]', 'L11a113'], ['v1109', (0, 1), 'SFS [S2: (3,2) (3,2) (8,3)]', 'K11a134'], ['v1300', (0, 1), 'L(61,16)'], ['v1300', (1, 0), 'SFS [S2: (2,1) (4,1) (5,4)]', 'L11a200'], ['v1392', (-1, 1), 'L(64,23)'], ['v1547', (-1, 1), 'L(71,26)'], ['v1620', (0, 1), 'SFS [S2: (3,1) (3,1) (7,3)]', 'K11a361'], ['v1620', (1, 1), 'SFS [S2: (2,1) (2,1) (13,4)]', 'L11a75'], ['v1628', (0, 1), 'SFS [S2: (2,1) (3,1) (4,11)]', 'L11a191'], ['v1628', (1, 0), 'SFS [S2: (2,1) (5,2) (5,4)]', 'K11a60'], ['v1690', (-1, 1), 'SFS [S2: (2,1) (3,2) (5,8)]', 'K10a3'], ['v1709', (0, 1), 'L(89,34)'], ['v1716', (1, 1), 'SFS [S2: (2,1) (2,1) (11,8)]', 'L10a25'], ['v1718', (-1, 1), 'SFS [S2: (2,1) (4,3) (7,3)]', 'L11a189'], ['v1718', (0, 1), 'SFS [S2: (2,1) (5,2) (7,3)]', 'K11a63'], ['v1728', (1, 1), 'SFS [S2: (2,1) (4,3) (5,3)]', 'L10a57'], ['v1810', (0, 1), 'L(100,39)'], ['v1832', (0, 1), 'L(81,31)'], ['v1839', (0, 1), 'L(121,46)'], ['v1921', (0, 1), 'L(99,29)'], ['v1940', (0, 1), 'SFS [S2: (2,1) (4,3) (5,7)]', 'L11a155'], ['v1940', (1, 0), 'SFS [S2: (2,1) (3,2) (9,7)]', 'K11a16'], ['v1966', (0, 1), 'SFS [S2: (3,2) (4,3) (5,3)]', 'K11a87'], ['v1966', (1, 0), 'SFS [S2: (2,1) (2,1) (11,19)]', 'L11a77'], ['v1980', (0, 1), 'L(49,18)'], ['v1986', (0, 1), 'L(99,29)'], ['v2024', (0, 1), 'SFS [S2: (2,1) (5,3) (7,3)]', 'K11a10'], ['v2024', (1, 1), 'SFS [S2: (2,1) (4,3) (5,7)]', 'L11a155'], ['v2090', (-1, 1), 'SFS [S2: (3,2) (3,2) (5,7)]', 'K11a78'], ['v2090', (0, 1), 'SFS [S2: (2,1) (5,2) (8,5)]', 'L11a157'], ['v2215', (0, 1), 'L(80,31)'], ['v2325', (0, 1), 'L(95,39)'], ['v2759', (0, 1), 'SFS [S2: (2,1) (3,1) (9,4)]', 'K11a260'], ['v2759', (1, 1), 'SFS [S2: (2,1) (3,1) (10,3)]', 'L11a259'], ['v2930', (0, 1), 'L(79,23)'], ['v3354', (1, 1), 'SFS [S2: (3,2) (3,2) (7,3)]', 'K11a202']]
len(UNCLEAR_NON_HYPERBOLIC_SLOPES)
184
UNCLEAR_NON_HYPERBOLIC_SLOPES
[['m239', (-1, 1)], ['o9_01584', (-1, 1)], ['o9_01621', (1, 1)], ['o9_02655', (-1, 1)], ['o9_02696', (-1, 1)], ['o9_02786', (-2, 1)], ['o9_03133', (1, 1)], ['o9_03313', (1, 1)], ['o9_03802', (-1, 1)], ['o9_04106', (1, 1)], ['o9_04205', (1, 1)], ['o9_04245', (-1, 1)], ['o9_04269', (-2, 1)], ['o9_04438', (-1, 1)], ['o9_05021', (-1, 1)], ['o9_05177', (-1, 1)], ['o9_05229', (-1, 1)], ['o9_05357', (-1, 1)], ['o9_05562', (-1, 1)], ['o9_05618', (-1, 1)], ['o9_05970', (-1, 1)], ['o9_06060', (1, 1)], ['o9_06154', (1, 1)], ['o9_07893', (-1, 1)], ['o9_07945', (-1, 1)], ['o9_08647', (1, 1)], ['o9_08771', (1, 1)], ['o9_08828', (-1, 1)], ['o9_08875', (-1, 1)], ['o9_09213', (1, 1)], ['o9_11999', (1, 1)], ['o9_12459', (-1, 1)], ['o9_12519', (-1, 1)], ['o9_12757', (-1, 1)], ['o9_12873', (-1, 1)], ['o9_12971', (-1, 1)], ['o9_13052', (-1, 1)], ['o9_13125', (1, 1)], ['o9_13188', (-1, 1)], ['o9_13433', (1, 1)], ['o9_13639', (1, 1)], ['o9_13666', (1, 1)], ['o9_13720', (1, 1)], ['o9_13952', (1, 1)], ['o9_14364', (-1, 1)], ['o9_14376', (1, 1)], ['o9_14495', (-1, 1)], ['o9_14716', (-1, 1)], ['o9_14831', (0, 1)], ['o9_14974', (1, 1)], ['o9_15506', (1, 1)], ['o9_15633', (1, 1)], ['o9_15997', (-1, 1)], ['o9_16065', (-1, 1)], ['o9_16141', (-1, 1)], ['o9_16157', (-1, 1)], ['o9_16181', (1, 1)], ['o9_16319', (-1, 1)], ['o9_16356', (1, 1)], ['o9_16527', (1, 1)], ['o9_16642', (-1, 1)], ['o9_16748', (-1, 1)], ['o9_16920', (0, 1)], ['o9_18007', (-1, 1)], ['o9_18209', (1, 1)], ['o9_18633', (-1, 1)], ['o9_18813', (1, 1)], ['o9_19130', (1, 1)], ['o9_20219', (-1, 1)], ['o9_21893', (-1, 1)], ['o9_21918', (-1, 1)], ['o9_22129', (-1, 1)], ['o9_22477', (-1, 1)], ['o9_22663', (0, 1)], ['o9_22698', (1, 1)], ['o9_22925', (-1, 1)], ['o9_23023', (1, 1)], ['o9_23263', (1, 1)], ['o9_23660', (1, 1)], ['o9_23955', (-1, 1)], ['o9_23961', (0, 1)], ['o9_24149', (-1, 1)], ['o9_24183', (1, 1)], ['o9_24534', (-1, 1)], ['o9_24592', (-1, 1)], ['o9_24886', (0, 1)], ['o9_24889', (1, 1)], ['o9_25595', (-1, 1)], ['o9_26604', (0, 1)], ['o9_26604', (1, 1)], ['o9_27392', (-1, 1)], ['o9_27480', (1, 1)], ['o9_27737', (0, 1)], ['o9_28113', (0, 1)], ['o9_28529', (-1, 1)], ['o9_28592', (0, 1)], ['o9_29246', (-1, 1)], ['o9_29436', (0, 1)], ['o9_29529', (0, 1)], ['o9_29529', (1, 1)], ['o9_30721', (0, 1)], ['o9_30721', (1, 1)], ['o9_30790', (0, 1)], ['o9_31165', (0, 1)], ['o9_31165', (1, 1)], ['o9_33526', (0, 1)], ['o9_33585', (-1, 1)], ['o9_33585', (0, 1)], ['o9_34403', (0, 1)], ['o9_35320', (-1, 1)], ['o9_35549', (0, 1)], ['o9_35549', (1, 1)], ['o9_35736', (0, 1)], ['o9_35736', (1, 1)], ['o9_37941', (0, 1)], ['o9_39394', (0, 1)], ['o9_40179', (0, 1)], ['s294', (-1, 1)], ['s336', (-2, 1)], ['s665', (1, 1)], ['s684', (1, 1)], ['s800', (-1, 1)], ['t00826', (1, 1)], ['t00855', (-1, 1)], ['t01318', (1, 1)], ['t01368', (1, 1)], ['t01422', (-2, 1)], ['t02099', (-2, 1)], ['t02104', (-1, 1)], ['t02238', (-1, 1)], ['t02398', (-1, 1)], ['t02404', (-1, 1)], ['t03979', (-1, 1)], ['t04180', (-1, 1)], ['t04244', (1, 1)], ['t04382', (1, 1)], ['t04721', (1, 1)], ['t05425', (1, 1)], ['t05538', (-1, 1)], ['t05564', (-1, 1)], ['t05658', (1, 1)], ['t05695', (-1, 1)], ['t06001', (-1, 1)], ['t06440', (-1, 1)], ['t06463', (1, 1)], ['t06525', (1, 1)], ['t06570', (-1, 1)], ['t06605', (1, 1)], ['t07348', (-1, 1)], ['t08111', (-1, 1)], ['t08201', (1, 1)], ['t08267', (1, 1)], ['t08403', (-1, 1)], ['t09016', (-1, 1)], ['t09267', (1, 1)], ['t09313', (1, 1)], ['t09455', (-1, 1)], ['t09704', (-1, 1)], ['t09852', (1, 1)], ['t09954', (-1, 1)], ['t09954', (0, 1)], ['t10188', (0, 1)], ['t10643', (0, 1)], ['t10681', (-1, 1)], ['t10985', (0, 1)], ['t11852', (0, 1)], ['t12753', (0, 1)], ['v0407', (1, 1)], ['v0434', (-1, 1)], ['v0707', (-2, 1)], ['v0759', (-1, 1)], ['v0939', (-1, 1)], ['v0945', (1, 1)], ['v1709', (-1, 1)], ['v1810', (-1, 1)], ['v1832', (1, 1)], ['v1839', (-1, 1)], ['v1921', (-1, 1)], ['v1980', (-1, 1)], ['v1986', (-1, 1)], ['v2215', (1, 1)], ['v2325', (-1, 1)], ['v2930', (-1, 1)], ['v3354', (0, 1)]]
For the remaining 184 unclear non hyperbolic fillings we proceed as follows.
We build for any of those fillings a list of DBCs of links in the HT link table that have the same homology as the filling. Then we run Dunfield's code on them to search for a match.
#### This is Dunfield's util.py from his exceptional census
#### for a snappy manifold M descibed as a single filling of a cusp (so do filled_triangulation() as needed)
#### the command regina_name(M) gives what regina identifies M as
"""
This file provides functions for working with Regina (with a little
help from SnapPy) to:
1. Give a standard name ("identify") manifolds, especially Seifert and
graph manifolds.
2. Find essential tori.
3. Try to compute the JSJ decomposition.
"""
import regina
import snappy
import re
import networkx as nx
def appears_hyperbolic(M):
acceptable = ['all tetrahedra positively oriented',
'contains negatively oriented tetrahedra']
return M.solution_type() in acceptable and M.volume() > 0
def children(packet):
child = packet.firstChild()
while child:
yield child
child = child.nextSibling()
def to_regina(data):
if hasattr(data, '_to_string'):
data = data._to_string()
if isinstance(data, str):
if data.find('(') > -1:
data = closed_isosigs(data)[0]
return regina.Triangulation3(data)
assert isinstance(data, regina.Triangulation3)
return data
def extract_vector(surface):
"""
Extract the raw vector of the (almost) normal surface in Regina's
NS_STANDARD coordinate system.
"""
S = surface
T = S.triangulation()
n = T.countTetrahedra()
ans = []
for i in range(n):
for j in range(4):
ans.append(S.triangles(i, j))
for j in range(3):
ans.append(S.quads(i, j))
A = regina.NormalSurface(T, regina.NS_STANDARD, ans)
assert A.sameSurface(S)
return ans
def haken_sum(S1, S2):
T = S1.triangulation()
assert S1.locallyCompatible(S2)
v1, v2 = extract_vector(S1), extract_vector(S2)
sum_vec = [x1 + x2 for x1, x2 in zip(v1, v2)]
A = regina.NormalSurface(T, regina.NS_STANDARD, sum_vec)
assert S1.locallyCompatible(A) and S2.locallyCompatible(A)
assert S1.eulerChar() + S2.eulerChar() == A.eulerChar()
return A
def census_lookup(regina_tri):
"""
Should the input triangulation be in Regina's census, return the
name of the manifold, dropping the triangulation number.
"""
hits = regina.Census.lookup(regina_tri)
hit = hits.first()
if hit is not None:
name = hit.name()
match = re.search('(.*) : #\d+$', name)
if match:
return match.group(1)
else:
return match
def standard_lookup(regina_tri):
match = regina.StandardTriangulation.isStandardTriangulation(regina_tri)
if match:
return match.manifold()
def closed_isosigs(snappy_manifold, trys=20, max_tets=50):
"""
Generate a slew of 1-vertex triangulations of a closed manifold
using SnapPy.
>>> M = snappy.Manifold('m004(1,2)')
>>> len(closed_isosigs(M, trys=5)) > 0
True
"""
M = snappy.Manifold(snappy_manifold)
assert M.cusp_info('complete?') == [False]
surgery_descriptions = [M.copy()]
try:
for curve in M.dual_curves():
N = M.drill(curve)
N.dehn_fill((1,0), 1)
surgery_descriptions.append(N.filled_triangulation([0]))
except snappy.SnapPeaFatalError:
pass
if len(surgery_descriptions) == 1:
# Try again, but unfill the cusp first to try to find more
# dual curves.
try:
filling = M.cusp_info(0).filling
N = M.copy()
N.dehn_fill((0, 0), 0)
N.randomize()
for curve in N.dual_curves():
D = N.drill(curve)
D.dehn_fill([filling, (1,0)])
surgery_descriptions.append(D.filled_triangulation([0]))
except snappy.SnapPeaFatalError:
pass
ans = set()
for N in surgery_descriptions:
for i in range(trys):
T = N.filled_triangulation()
if T._num_fake_cusps() == 1:
n = T.num_tetrahedra()
if n <= max_tets:
ans.add((n, T.triangulation_isosig(decorated=False)))
N.randomize()
return [iso for n, iso in sorted(ans)]
def best_match(matches):
"""
Prioritize the most concise description that Regina provides to
try to avoid things like the Seifert fibered space of a node being
a solid torus or having several nodes that can be condensed into a
single Seifert fibered piece.
"""
def score(m):
if isinstance(m, regina.SFSpace):
s = 0
elif isinstance(m, regina.GraphLoop):
s = 1
elif isinstance(m, regina.GraphPair):
s = 2
elif isinstance(m, regina.GraphTriple):
s = 3
elif m is None:
s = 10000
else:
s = 4
return (s, str(m))
return min(matches, key=score)
def identify_with_torus_boundary(regina_tri):
"""
Use the combined power of Regina and SnapPy to try to give a name
to the input manifold.
"""
kind, name = None, None
P = regina_tri.clone()
P.finiteToIdeal()
P.intelligentSimplify()
M = snappy.Manifold(P.isoSig())
M.simplify()
if appears_hyperbolic(M):
for i in range(100):
if M.solution_type() == 'all tetrahedra positively oriented':
break
M.randomize()
if not M.verify_hyperbolicity(bits_prec=100):
raise RuntimeError('Cannot prove hyperbolicity for ' +
M.triangulation_isosig())
kind = 'hyperbolic'
ids = M.identify()
if ids:
name = ids[0].name()
else:
match = standard_lookup(regina_tri)
if match is None:
Q = P.clone()
Q.idealToFinite()
Q.intelligentSimplify()
match = standard_lookup(Q)
if match is not None:
kind = match.__class__.__name__
name = str(match)
else:
name = P.isoSig()
return kind, name
def is_toroidal(regina_tri):
"""
Checks for essential tori and returns the pieces of the
associated partial JSJ decomposition.
>>> T = to_regina('hLALAkbccfefgglpkusufk') # m004(4,1)
>>> is_toroidal(T)[0]
True
>>> T = to_regina('hvLAQkcdfegfggjwajpmpw') # m004(0,1)
>>> is_toroidal(T)[0]
True
>>> T = to_regina('nLLLLMLPQkcdgfihjlmmlkmlhshnrvaqtpsfnf') # 5_2(10,1)
>>> T.isHaken()
True
>>> is_toroidal(T)[0]
False
Note: currently checks all fundamental normal tori; possibly
the theory lets one just check *vertex* normal tori.
"""
T = regina_tri
assert T.isZeroEfficient()
surfaces = regina.NNormalSurfaceList.enumerate(T,
regina.NS_QUAD, regina.NS_FUNDAMENTAL)
for i in range(surfaces.size()):
S = surfaces.surface(i)
if S.eulerChar() == 0:
if not S.isOrientable():
S = S.doubleSurface()
assert S.isOrientable()
X = S.cutAlong()
X.intelligentSimplify()
X.splitIntoComponents()
pieces = list(children(X))
if all(not C.hasCompressingDisc() for C in pieces):
ids = [identify_with_torus_boundary(C) for C in pieces]
return (True, sorted(ids))
return (False, None)
def decompose_along_tori(regina_tri):
"""
First, finds all essential normal tori in the manifold associated
with fundamental normal surfaces. Then takes a maximal disjoint
collection of these tori, namely the one with the fewest tori
involved, and cuts the manifold open along it. It tries to
identify the pieces, removing any (torus x I) components.
Returns: (has essential torus, list of pieces)
Note: This may fail to be the true JSJ decomposition because there
could be (torus x I)'s in the list of pieces and it might well be
possible to amalgamate some of the pieces into a single SFS.
"""
T = regina_tri
assert T.isZeroEfficient()
essential_tori = []
surfaces = regina.NNormalSurfaceList.enumerate(T,
regina.NS_QUAD, regina.NS_FUNDAMENTAL)
for i in range(surfaces.size()):
S = surfaces.surface(i)
if S.eulerChar() == 0:
if not S.isOrientable():
S = S.doubleSurface()
assert S.isOrientable()
X = S.cutAlong()
X.intelligentSimplify()
X.splitIntoComponents()
pieces = list(children(X))
if all(not C.hasCompressingDisc() for C in pieces):
essential_tori.append(S)
if len(essential_tori) == 0:
return False, None
D = nx.Graph()
for a, A in enumerate(essential_tori):
for b, B in enumerate(essential_tori):
if a < b:
if A.disjoint(B):
D.add_edge(a, b)
cliques = list(nx.find_cliques(D))
if len(cliques) == 0:
clique = [0]
else:
clique = min(cliques, key=len)
clique = [essential_tori[c] for c in clique]
A = clique[0]
for B in clique[1:]:
A = haken_sum(A, B)
X = A.cutAlong()
X.intelligentSimplify()
X.splitIntoComponents()
ids = [identify_with_torus_boundary(C) for C in list(children(X))]
# Remove products
ids = [i for i in ids if i[1] not in ('SFS [A: (1,1)]', 'A x S1')]
return (True, sorted(ids))
def regina_name(closed_snappy_manifold, trys=100):
"""
>>> regina_name('m004(1,0)')
'S3'
>>> regina_name('s006(-2, 1)')
'SFS [A: (5,1)] / [ 0,-1 | -1,0 ]'
>>> regina_name('m010(-1, 1)')
'L(3,1) # RP3'
>>> regina_name('m022(-1,1)')
'SFS [S2: (3,2) (3,2) (4,-3)]'
>>> regina_name('v0004(0, 1)')
'SFS [S2: (2,1) (4,1) (15,-13)]'
>>> regina_name('m305(1, 0)')
'L(3,1) # RP3'
"""
M = snappy.Manifold(closed_snappy_manifold)
isosigs = closed_isosigs(M, trys=trys, max_tets=25)
if len(isosigs) == 0:
return
T = to_regina(isosigs[0])
if T.isIrreducible():
if T.countTetrahedra() <= 11:
for i in range(3):
T.simplifyExhaustive(i)
name = census_lookup(T)
if name is not None:
return name
matches = [standard_lookup(to_regina(iso)) for iso in isosigs]
match = best_match(matches)
if match is not None:
return str(match)
else:
T.connectedSumDecomposition()
pieces = [regina_name(P) for P in children(T)]
if None not in pieces:
return ' # '.join(sorted(pieces))
if __name__ == '__main__':
import doctest
print(doctest.testmod())
<>:84: DeprecationWarning: invalid escape sequence \d <>:84: DeprecationWarning: invalid escape sequence \d <ipython-input-24-4bef5675ef00>:84: DeprecationWarning: invalid escape sequence \d match = re.search('(.*) : #\d+$', name) /usr/lib/python3.8/inspect.py:520: DeprecationWarning: Importing absolute_igusa_invariants_kohel from here is deprecated. If you need to use it, please import it directly from sage.schemes.hyperelliptic_curves.invariants See https://trac.sagemath.org/28064 for details. while _is_wrapper(func): /usr/lib/python3.8/inspect.py:520: DeprecationWarning: Importing absolute_igusa_invariants_wamelen from here is deprecated. If you need to use it, please import it directly from sage.schemes.hyperelliptic_curves.invariants See https://trac.sagemath.org/28064 for details. while _is_wrapper(func): /usr/lib/python3.8/inspect.py:520: DeprecationWarning: this is being removed from the global namespace See https://trac.sagemath.org/25785 for details. while _is_wrapper(func): /usr/lib/python3.8/inspect.py:520: DeprecationWarning: Importing all_max_clique from here is deprecated. If you need to use it, please import it directly from sage.graphs.cliquer See https://trac.sagemath.org/26200 for details. while _is_wrapper(func): /usr/lib/python3.8/inspect.py:520: DeprecationWarning: Importing backtrack_all from here is deprecated. If you need to use it, please import it directly from sage.games.sudoku_backtrack See https://trac.sagemath.org/27066 for details. while _is_wrapper(func): /usr/lib/python3.8/inspect.py:520: DeprecationWarning: Importing berlekamp_massey from here is deprecated. If you need to use it, please import it directly from sage.matrix.berlekamp_massey See https://trac.sagemath.org/27066 for details. while _is_wrapper(func): /usr/lib/python3.8/inspect.py:520: DeprecationWarning: this is being removed from the global namespace See https://trac.sagemath.org/25785 for details. while _is_wrapper(func): /usr/lib/python3.8/inspect.py:520: DeprecationWarning: Importing buzzard_tpslopes from here is deprecated. If you need to use it, please import it directly from sage.modular.buzzard See https://trac.sagemath.org/27066 for details. while _is_wrapper(func): /usr/lib/python3.8/inspect.py:520: DeprecationWarning: Importing clebsch_invariants from here is deprecated. If you need to use it, please import it directly from sage.schemes.hyperelliptic_curves.invariants See https://trac.sagemath.org/28064 for details. while _is_wrapper(func): /usr/lib/python3.8/inspect.py:520: DeprecationWarning: Importing clique_number from here is deprecated. If you need to use it, please import it directly from sage.graphs.cliquer See https://trac.sagemath.org/26200 for details. while _is_wrapper(func): /usr/lib/python3.8/inspect.py:520: DeprecationWarning: Importing convergents from here is deprecated. If you need to use it, please import it directly from sage.rings.continued_fraction See https://trac.sagemath.org/27066 for details. while _is_wrapper(func): /usr/lib/python3.8/inspect.py:511: DeprecationWarning: sage.interacts.debugger is deprecated because it is meant for the deprecated Sage Notebook See https://trac.sagemath.org/27531 for details. return hasattr(f, '__wrapped__') /usr/lib/python3.8/inspect.py:520: DeprecationWarning: Importing designs_from_XML from here is deprecated. If you need to use it, please import it directly from sage.combinat.designs.ext_rep See https://trac.sagemath.org/27066 for details. while _is_wrapper(func): /usr/lib/python3.8/inspect.py:520: DeprecationWarning: Importing designs_from_XML_url from here is deprecated. If you need to use it, please import it directly from sage.combinat.designs.ext_rep See https://trac.sagemath.org/27066 for details. while _is_wrapper(func):
--------------------------------------------------------------------------- ModuleNotFoundError Traceback (most recent call last) <ipython-input-24-4bef5675ef00> in <module> 350 if __name__ == '__main__': 351 import doctest --> 352 print(doctest.testmod()) /usr/lib/python3.8/doctest.py in testmod(m, name, globs, verbose, report, optionflags, extraglobs, raise_on_error, exclude_empty) 1953 runner = DocTestRunner(verbose=verbose, optionflags=optionflags) 1954 -> 1955 for test in finder.find(m, name, globs=globs, extraglobs=extraglobs): 1956 runner.run(test) 1957 /usr/lib/python3.8/doctest.py in find(self, obj, name, module, globs, extraglobs) 937 # Recursively explore `obj`, extracting DocTests. 938 tests = [] --> 939 self._find(tests, obj, name, module, source_lines, globs, {}) 940 # Sort the tests by alpha order of names, for consistency in 941 # verbose-mode output. This was a feature of doctest in Pythons /usr/lib/python3.8/doctest.py in _find(self, tests, obj, name, module, source_lines, globs, seen) 996 valname = '%s.%s' % (name, valname) 997 # Recurse to functions & classes. --> 998 if ((inspect.isroutine(inspect.unwrap(val)) 999 or inspect.isclass(val)) and 1000 self._from_module(module, val)): /usr/lib/python3.8/inspect.py in unwrap(func, stop) 518 memo = {id(f): f} 519 recursion_limit = sys.getrecursionlimit() --> 520 while _is_wrapper(func): 521 func = func.__wrapped__ 522 id_func = id(func) /usr/lib/python3.8/inspect.py in _is_wrapper(f) 509 if stop is None: 510 def _is_wrapper(f): --> 511 return hasattr(f, '__wrapped__') 512 else: 513 def _is_wrapper(f): /usr/lib/python3/dist-packages/sage/misc/lazy_import.pyx in sage.misc.lazy_import.LazyImport.__getattr__ (build/cythonized/sage/misc/lazy_import.c:3536)() 319 True 320 """ --> 321 return getattr(self.get_object(), attr) 322 323 # We need to wrap all the slot methods, as they are not forwarded /usr/lib/python3/dist-packages/sage/misc/lazy_import.pyx in sage.misc.lazy_import.LazyImport.get_object (build/cythonized/sage/misc/lazy_import.c:2347)() 186 if likely(self._object is not None): 187 return self._object --> 188 return self._get_object() 189 190 cpdef _get_object(self): /usr/lib/python3/dist-packages/sage/misc/lazy_import.pyx in sage.misc.lazy_import.LazyImport._get_object (build/cythonized/sage/misc/lazy_import.c:2586)() 218 elif self._at_startup and not startup_guard: 219 print('Option ``at_startup=True`` for lazy import {0} not needed anymore'.format(self._name)) --> 220 self._object = getattr(__import__(self._module, {}, {}, [self._name]), self._name) 221 name = self._as_name 222 if self._deprecation is not None: ModuleNotFoundError: No module named 'sagenb'
Dunfield's code works for manifolds with one cusp and thus we need the following function that fills all but one cusp permanently.
def fill_triangulation(M):
'''
Fills all cusps but one.
'''
if M.num_cusps()==1:
return M
M=M.filled_triangulation([0])
M=fill_triangulation(M)
return M
start_time = time.time()
ALTERNATING_NON_HYPERBOLIC=[]
STILL_UNCLEAR=[]
for (knot,slope) in UNCLEAR_NON_HYPERBOLIC_SLOPES:
K=snappy.Manifold(knot)
K.dehn_fill(slope)
K_reg=regina_name(K)
DBC=possible_DBC([K.homology().order()],max_crossings=13)
has_alter=False
for D in DBC:
DF=fill_triangulation(D[0])
if regina_name(DF)==K_reg:
ALTERNATING_NON_HYPERBOLIC.append([knot,slope,K_reg,D[1]])
has_alter=True
break
if has_alter==False:
STILL_UNCLEAR.append([knot,slope])
print("--- Time taken: %s hours ---" % ((time.time() - start_time)/3600))
--- Time taken: 2.0233842552370493 hours ---
len(ALTERNATING_NON_HYPERBOLIC)
184
len(STILL_UNCLEAR)
0
ALTERNATING_NON_HYPERBOLIC.sort()
for knot in GOERITZ:
if len(knot[2])!=2:
print(knot)
['o9_32132', [7, 5, 3], [[85, [[2, -1, -1, 0], [-1, 4, -1, -1], [-1, -1, 6, -2], [0, -1, -2, 4]]]]] ['o9_32588', [5, 5, 4, 3, 2, 2], [[84, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1], [0, 0, 3, -1, -1, -1], [-1, 0, -1, 3, 0, -1], [0, 0, -1, 0, 3, 0], [0, -1, -1, -1, 0, 3]]]]] ['o9_37754', [6, 6, 4, 3, 2], [[102, [[2, 0, 0, 0, -1], [0, 3, 0, -1, -1], [0, 0, 3, -1, -1], [0, -1, -1, 4, 0], [-1, -1, -1, 0, 3]]]]] ['o9_39451', [7, 6, 3, 2, 2], [[103, [[2, 0, -1, 0, 0], [0, 3, -1, -1, -1], [-1, -1, 3, -1, 0], [0, -1, -1, 4, -1], [0, -1, 0, -1, 4]]]]] ['o9_40179', [8, 7, 3, 2, 2], [[131, [[2, -1, 0, -1, 0], [-1, 4, 0, 0, -2], [0, 0, 4, 0, -3], [-1, 0, 0, 3, -1], [0, -2, -3, -1, 6]]]]] ['o9_43001', [8, 5, 4, 2, 2], [[114, [[2, 0, -1, 0, 0], [0, 4, -1, -1, -1], [-1, -1, 4, 0, -1], [0, -1, 0, 3, -1], [0, -1, -1, -1, 3]]]]] ['o9_43679', [7, 7, 5, 3, 3], [[143, [[2, 0, 0, 0, -1, -1], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, -1], [-1, 0, 0, -1, 4, 0], [-1, -1, -1, -1, 0, 4]]]]] ['o9_43953', [9, 4, 3, 3], [[117, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 5, -2, 0], [0, 0, -2, 5, -1], [-1, -1, 0, -1, 3]]]]] ['o9_44054', [9, 5, 3, 3], [[126, [[2, 0, 0, -1, 0], [0, 2, 0, 0, -1], [0, 0, 6, -2, -2], [-1, 0, -2, 4, -1], [0, -1, -2, -1, 4]]]]] ['t10188', [5, 4, 3, 2, 2], [[59, [[2, -1, 0, -1, 0], [-1, 4, 0, 0, -2], [0, 0, 3, -1, -1], [-1, 0, -1, 3, 0], [0, -2, -1, 0, 3]]]]] ['t11556', [6, 4, 3, 2], [[66, [[5, -1, -1, -2], [-1, 3, 0, -1], [-1, 0, 3, -1], [-2, -1, -1, 4]]]]] ['t12753', [7, 5, 3, 3], [[94, [[2, 0, -1, -1, 0], [0, 2, -1, 0, -1], [-1, -1, 4, 0, -1], [-1, 0, 0, 4, -1], [0, -1, -1, -1, 4]]]]]
ALTERNATING_NON_HYPERBOLIC
[['m239', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (3,1)], m = [ -1,1 | 0,1 ]', 'K8a15'], ['o9_01584', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (7,3)], m = [ 0,-1 | 1,2 ]', 'L13a339'], ['o9_01621', (1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (7,4)], m = [ 0,-1 | 1,2 ]', 'L13a337'], ['o9_02655', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (17,5)], m = [ -1,1 | 0,1 ]', 'K12a527'], ['o9_02696', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (18,5)], m = [ -1,1 | 0,1 ]', 'L12a920'], ['o9_02786', (-2, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (6,1)], m = [ -1,1 | 0,1 ]', 'K12a1095'], ['o9_03133', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (4,1)], m = [ 0,-1 | 1,2 ]', 'L13a1959'], ['o9_03313', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (5,2)], m = [ 0,-1 | 1,2 ]', 'K13a587'], ['o9_03802', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (4,1)], m = [ 2,1 | -1,0 ]', 'L13a1665'], ['o9_04106', (1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,1)], m = [ -1,-1 | 4,3 ]', 'L13a380'], ['o9_04205', (1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,2)], m = [ -1,-1 | 4,3 ]', 'L13a365'], ['o9_04245', (-1, 1), 'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (4,3)], m = [ 0,-1 | 1,2 ]', 'L13a1869'], ['o9_04269', (-2, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (4,1) (5,4)], m = [ -1,1 | 0,1 ]', 'K12a1011'], ['o9_04438', (-1, 1), 'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (5,3)], m = [ 0,-1 | 1,2 ]', 'K13a60'], ['o9_05021', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (7,3)], m = [ 2,1 | -1,0 ]', 'L13a765'], ['o9_05177', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (7,4)], m = [ 2,1 | -1,0 ]', 'L13a763'], ['o9_05229', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,1)], m = [ -3,-1 | 4,1 ]', 'L13a841'], ['o9_05357', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (5,2)], m = [ 2,1 | -1,0 ]', 'K13a427'], ['o9_05562', (-1, 1), 'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (4,3)], m = [ 2,1 | -1,0 ]', 'L13a1595'], ['o9_05618', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,2)], m = [ -3,-1 | 4,1 ]', 'L13a790'], ['o9_05970', (-1, 1), 'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (5,3)], m = [ 2,1 | -1,0 ]', 'K13a18'], ['o9_06060', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (5,2) (7,2)], m = [ -1,1 | 0,1 ]', 'K12a318'], ['o9_06154', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (5,3) (7,2)], m = [ -1,1 | 0,1 ]', 'L12a835'], ['o9_07893', (-1, 1), 'SFS [RP2/n2: (2,1) (25,-18)]', 'L12a29'], ['o9_07945', (-1, 1), 'SFS [RP2/n2: (2,1) (29,-21)]', 'L12a26'], ['o9_08647', (1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,2) (7,4)], m = [ 0,-1 | 1,1 ]', 'L13a947'], ['o9_08771', (1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,2) (8,5)], m = [ 0,-1 | 1,1 ]', 'L13a574'], ['o9_08828', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (10,7)], m = [ 0,-1 | 1,0 ]', 'L13a2834'], ['o9_08875', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (11,8)], m = [ 0,-1 | 1,0 ]', 'K13a803'], ['o9_09213', (1, 1), 'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (5,1)], m = [ 1,1 | -1,0 ]', 'K13a176'], ['o9_11999', (1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (4,3) (5,2)], m = [ 0,-1 | 1,1 ]', 'L13a572'], ['o9_12459', (-1, 1), 'SFS [D: (2,1) (5,1)] U/m SFS [D: (2,1) (7,5)], m = [ -1,1 | 0,1 ]', 'K12a440'], ['o9_12519', (-1, 1), 'SFS [D: (2,1) (5,1)] U/m SFS [D: (2,1) (7,2)], m = [ -1,1 | 0,1 ]', 'K12a365'], ['o9_12757', (-1, 1), 'SFS [D: (2,1) (3,2)] U/m SFS [D: (3,1) (5,1)], m = [ 0,-1 | 1,0 ]', 'L13a4367'], ['o9_12873', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (5,3)], m = [ 0,-1 | 1,1 ]', 'L13a3024'], ['o9_12971', (-1, 1), 'SFS [D: (2,1) (4,1)] U/m SFS [D: (4,1) (5,3)], m = [ -1,1 | 0,1 ]', 'L12a558'], ['o9_13052', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (9,2)], m = [ 0,-1 | 1,0 ]', 'K13a1413'], ['o9_13125', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (14,11)], m = [ -1,1 | 0,1 ]', 'L12a841'], ['o9_13188', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (4,1) (7,2)], m = [ 0,-1 | 1,0 ]', 'L13a674'], ['o9_13433', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (18,5)], m = [ -1,1 | 0,1 ]', 'L12a920'], ['o9_13639', (1, 1), 'SFS [D: (2,1) (4,1)] U/m SFS [D: (3,2) (7,4)], m = [ -1,1 | 0,1 ]', 'L12a689'], ['o9_13666', (1, 1), 'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (7,3)], m = [ 0,-1 | 1,0 ]', 'L13a1663'], ['o9_13720', (1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (11,3)], m = [ 0,-1 | 1,1 ]', 'L13a318'], ['o9_13952', (1, 1), 'SFS [D: (2,1) (7,5)] U/m SFS [D: (3,1) (3,1)], m = [ 0,-1 | 1,0 ]', 'L13a3554'], ['o9_14364', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (5,4)], m = [ 1,1 | 0,-1 ]', 'L12a62'], ['o9_14376', (1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,2) (11,3)], m = [ 0,-1 | 1,0 ]', 'L13a1116'], ['o9_14495', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,2)], m = [ -1,-1 | 2,3 ]', 'L12a66'], ['o9_14716', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (4,3)], m = [ 0,-1 | 1,1 ]', 'K13a3243'], ['o9_14831', (0, 1), 'SFS [RP2/n2: (4,1) (5,-1)]', 'L11a51'], ['o9_14974', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (5,4)], m = [ 1,1 | -1,0 ]', 'K13a1545'], ['o9_15506', (1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,2)], m = [ -2,-1 | 3,2 ]', 'L12a176'], ['o9_15633', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (18,13)], m = [ -1,1 | 0,1 ]', 'L12a921'], ['o9_15997', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,2) (4,3)], m = [ -1,-1 | 2,1 ]', 'L13a707'], ['o9_16065', (-1, 1), 'SFS [D: (2,1) (3,2)] U/m SFS [D: (3,2) (5,3)], m = [ 0,-1 | 1,1 ]', 'L13a2968'], ['o9_16141', (-1, 1), 'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (7,5)], m = [ 0,-1 | 1,1 ]', 'K13a148'], ['o9_16157', (-1, 1), 'SFS [D: (2,1) (4,3)] U/m SFS [D: (3,2) (3,2)], m = [ 0,-1 | 1,1 ]', 'L13a1842'], ['o9_16181', (1, 1), 'SFS [D: (2,1) (7,5)] U/m SFS [D: (3,1) (3,2)], m = [ 0,-1 | 1,0 ]', 'K13a811'], ['o9_16319', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (3,2)], m = [ -1,-1 | 2,1 ]', 'K13a719'], ['o9_16356', (1, 1), 'SFS [D: (2,1) (4,3)] U/m SFS [D: (3,1) (3,1)], m = [ 0,-1 | 1,1 ]', 'L13a2089'], ['o9_16527', (1, 1), 'SFS [D: (2,1) (4,3)] U/m SFS [D: (3,1) (4,3)], m = [ 0,-1 | 1,0 ]', 'L13a1858'], ['o9_16642', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (7,5)], m = [ -1,-1 | 2,1 ]', 'L13a354'], ['o9_16748', (-1, 1), 'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (11,8)], m = [ -1,1 | 0,1 ]', 'L12a473'], ['o9_16920', (0, 1), 'SFS [RP2/n2: (4,1) (7,-2)]', 'L11a54'], ['o9_18007', (-1, 1), 'SFS [D: (2,1) (9,2)] U/m SFS [D: (3,1) (3,2)], m = [ -1,1 | 0,1 ]', 'L12a536'], ['o9_18209', (1, 1), 'SFS [D: (2,1) (5,2)] U/m SFS [D: (3,1) (4,1)], m = [ 0,-1 | 1,0 ]', 'K13a575'], ['o9_18633', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,2) (4,3)], m = [ 1,1 | 0,-1 ]', 'L12a184'], ['o9_18813', (1, 1), 'SFS [D: (2,1) (8,3)] U/m SFS [D: (3,1) (3,1)], m = [ -1,1 | 0,1 ]', 'L11a198'], ['o9_19130', (1, 1), 'SFS [RP2/n2: (3,1) (10,-7)]', 'L11a102'], ['o9_20219', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (15,11)], m = [ -1,1 | 0,1 ]', 'K12a849'], ['o9_21893', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (5,4)], m = [ -1,1 | 0,1 ]', 'L11a282'], ['o9_21918', (-1, 1), 'SFS [D: (2,1) (4,1)] U/m SFS [D: (3,1) (4,3)], m = [ -1,1 | 0,1 ]', 'L11a173'], ['o9_22129', (-1, 1), 'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (5,1)], m = [ 0,-1 | 1,0 ]', 'L13a1662'], ['o9_22477', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (4,1) (4,3)], m = [ -1,1 | 0,1 ]', 'L11a255'], ['o9_22663', (0, 1), 'SFS [RP2/n2: (5,2) (7,-5)]', 'L11a104'], ['o9_22698', (1, 1), 'SFS [D: (2,1) (7,2)] U/m SFS [D: (2,1) (7,2)], m = [ -1,1 | 0,1 ]', 'K12a353'], ['o9_22925', (-1, 1), 'SFS [D: (3,1) (3,1)] U/m SFS [D: (3,1) (5,2)], m = [ -1,1 | 0,1 ]', 'K11a232'], ['o9_23023', (1, 1), 'SFS [D: (2,1) (7,2)] U/m SFS [D: (2,1) (8,3)], m = [ -1,1 | 0,1 ]', 'L12a456'], ['o9_23263', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (3,1)], m = [ 0,-1 | 1,2 ]', 'L13a4177'], ['o9_23660', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (3,2)], m = [ 0,-1 | 1,2 ]', 'K13a1744'], ['o9_23955', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (4,1)], m = [ 0,-1 | 1,1 ]', 'K13a3269'], ['o9_23961', (0, 1), 'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (7,2)], m = [ 0,-1 | 1,0 ]', 'L13a1655'], ['o9_24149', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (4,1) (4,3)], m = [ 0,-1 | 1,0 ]', 'L13a3083'], ['o9_24183', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (8,5)], m = [ 0,-1 | 1,0 ]', 'K13a888'], ['o9_24534', (-1, 1), 'SFS [D: (2,1) (5,1)] U/m SFS [D: (3,1) (3,1)], m = [ 0,-1 | 1,0 ]', 'L13a3661'], ['o9_24592', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (4,1) (4,3)], m = [ -1,1 | 0,1 ]', 'L11a255'], ['o9_24886', (0, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (13,5)], m = [ 1,1 | -1,0 ]', 'L13a353'], ['o9_24889', (1, 1), 'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (10,3)], m = [ 0,-1 | 1,0 ]', 'L13a2793'], ['o9_25595', (-1, 1), 'SFS [D: (2,1) (4,1)] U/m SFS [D: (3,1) (4,1)], m = [ 0,-1 | 1,0 ]', 'L13a1946'], ['o9_26604', (0, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (12,5)], m = [ -1,1 | 0,1 ]', 'L11a182'], ['o9_26604', (1, 1), 'SFS [D: (2,1) (5,2)] U/m SFS [D: (2,1) (7,5)], m = [ -1,1 | 0,1 ]', 'K11a27'], ['o9_27392', (-1, 1), 'SFS [D: (2,1) (5,2)] U/m SFS [D: (3,1) (3,1)], m = [ 1,1 | -1,0 ]', 'L13a3545'], ['o9_27480', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (3,1)], m = [ 2,1 | -1,0 ]', 'L13a3645'], ['o9_27737', (0, 1), 'SFS [D: (2,1) (4,1)] U/m SFS [D: (3,2) (4,1)], m = [ 0,-1 | 1,0 ]', 'L13a1963'], ['o9_28113', (0, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (4,1) (5,2)], m = [ 1,1 | -1,0 ]', 'L13a803'], ['o9_28529', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (5,2)], m = [ 0,-1 | 1,1 ]', 'K13a780'], ['o9_28592', (0, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (7,2)], m = [ 1,1 | -1,0 ]', 'K13a1156'], ['o9_29246', (-1, 1), 'SFS [D: (3,1) (3,1)] U/m SFS [D: (3,2) (5,3)], m = [ 0,-1 | 1,0 ]', 'K13a1903'], ['o9_29436', (0, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (8,3)], m = [ 1,1 | -1,0 ]', 'L13a1612'], ['o9_29529', (0, 1), 'SFS [RP2/n2: (2,1) (19,-11)]', 'L11a3'], ['o9_29529', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (13,5)], m = [ -1,1 | 0,1 ]', 'K11a72'], ['o9_30721', (0, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,2) (5,3)], m = [ 0,-1 | 1,0 ]', 'L11a69'], ['o9_30721', (1, 1), 'SFS [D: (3,1) (3,2)] U/m SFS [D: (3,1) (5,2)], m = [ -1,1 | 0,1 ]', 'K11a157'], ['o9_30790', (0, 1), 'SFS [D: (2,1) (5,3)] U/m SFS [D: (2,1) (7,2)], m = [ 0,-1 | 1,0 ]', 'K13a9'], ['o9_31165', (0, 1), 'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (5,2)], m = [ 1,1 | -1,0 ]', 'L13a1668'], ['o9_31165', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (3,2)], m = [ 2,1 | -1,0 ]', 'K13a912'], ['o9_33526', (0, 1), 'SFS [D: (2,1) (5,2)] U/m SFS [D: (3,1) (3,2)], m = [ -1,1 | 0,1 ]', 'L10a69'], ['o9_33585', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (4,3) (5,2)], m = [ -1,1 | 0,1 ]', 'K11a130'], ['o9_33585', (0, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (5,3)], m = [ 0,-1 | 1,1 ]', 'L11a30'], ['o9_34403', (0, 1), 'SFS [RP2/n2: (4,1) (7,-4)]', 'L11a50'], ['o9_35320', (-1, 1), 'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (7,5)], m = [ -1,1 | 0,1 ]', 'L11a149'], ['o9_35549', (0, 1), 'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (5,2)], m = [ -1,-1 | 2,1 ]', 'K13a164'], ['o9_35549', (1, 1), 'SFS [D: (3,1) (3,2)] U/m SFS [D: (3,2) (5,3)], m = [ 0,-1 | 1,0 ]', 'L13a4597'], ['o9_35736', (0, 1), 'SFS [D: (2,1) (3,2)] U/m SFS [D: (3,2) (5,2)], m = [ 1,1 | -1,0 ]', 'L13a2540'], ['o9_35736', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (5,3)], m = [ 1,1 | -1,0 ]', 'K13a914'], ['o9_37941', (0, 1), 'SFS [RP2/n2: (3,1) (10,-7)]', 'L11a102'], ['o9_39394', (0, 1), 'SFS [D: (2,1) (3,2)] U/m SFS [D: (3,2) (3,2)], m = [ 0,-1 | 1,0 ]', 'L11a220'], ['o9_40179', (0, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (7,4)], m = [ -1,1 | 0,1 ]', 'K11a298'], ['s294', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (4,1)], m = [ -1,1 | 0,1 ]', 'L9a22'], ['s336', (-2, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (3,1)], m = [ -1,1 | 0,1 ]', 'K9a31'], ['s665', (1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,2)], m = [ 0,-1 | 1,1 ]', 'L10a13'], ['s684', (1, 1), 'SFS [RP2/n2: (2,1) (7,-5)]', 'L9a3'], ['s800', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (3,2)], m = [ 0,-1 | 1,0 ]', 'K10a8'], ['t00826', (1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (5,2)], m = [ 0,-1 | 1,2 ]', 'L12a100'], ['t00855', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (5,3)], m = [ 0,-1 | 1,2 ]', 'L12a97'], ['t01318', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (10,3)], m = [ -1,1 | 0,1 ]', 'L11a257'], ['t01368', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (11,3)], m = [ -1,1 | 0,1 ]', 'K11a81'], ['t01422', (-2, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (5,1)], m = [ -1,1 | 0,1 ]', 'K11a323'], ['t02099', (-2, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (4,1) (4,3)], m = [ -1,1 | 0,1 ]', 'L11a255'], ['t02104', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (7,2)], m = [ -1,1 | 0,1 ]', 'L11a234'], ['t02238', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (5,2)], m = [ 2,1 | -1,0 ]', 'L12a240'], ['t02398', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (5,3)], m = [ 2,1 | -1,0 ]', 'L12a239'], ['t02404', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (7,2)], m = [ -1,1 | 0,1 ]', 'K11a150'], ['t03979', (-1, 1), 'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (7,4)], m = [ -1,1 | 0,1 ]', 'L11a144'], ['t04180', (-1, 1), 'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (4,1)], m = [ 1,1 | -1,0 ]', 'L12a524'], ['t04244', (1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (7,5)], m = [ 0,-1 | 1,1 ]', 'L12a93'], ['t04382', (1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (11,3)], m = [ 0,-1 | 1,0 ]', 'L12a90'], ['t04721', (1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,1) (4,3)], m = [ 0,-1 | 1,1 ]', 'L12a250'], ['t05425', (1, 1), 'SFS [D: (2,1) (4,1)] U/m SFS [D: (3,1) (5,3)], m = [ -1,1 | 0,1 ]', 'L11a212'], ['t05538', (-1, 1), 'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (7,2)], m = [ -1,1 | 0,1 ]', 'L11a148'], ['t05564', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,1) (7,2)], m = [ 0,-1 | 1,0 ]', 'L12a202'], ['t05658', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (9,7)], m = [ -1,1 | 0,1 ]', 'K11a167'], ['t05695', (-1, 1), 'SFS [D: (2,1) (3,2)] U/m SFS [D: (3,1) (4,1)], m = [ 0,-1 | 1,0 ]', 'K12a93'], ['t06001', (-1, 1), 'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (5,2)], m = [ 0,-1 | 1,0 ]', 'L12a523'], ['t06440', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (4,3)], m = [ 1,1 | -1,0 ]', 'L12a497'], ['t06463', (1, 1), 'SFS [D: (2,1) (3,2)] U/m SFS [D: (3,2) (3,2)], m = [ 0,-1 | 1,1 ]', 'K12a79'], ['t06525', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (11,8)], m = [ -1,1 | 0,1 ]', 'K11a80'], ['t06570', (-1, 1), 'SFS [D: (2,1) (4,3)] U/m SFS [D: (3,1) (3,2)], m = [ 0,-1 | 1,0 ]', 'L12a602'], ['t06605', (1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,2) (3,2)], m = [ -1,-1 | 2,1 ]', 'L12a342'], ['t07348', (-1, 1), 'SFS [D: (2,1) (5,2)] U/m SFS [D: (3,1) (3,1)], m = [ -1,1 | 0,1 ]', 'K10a12'], ['t08111', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (4,3)], m = [ -1,1 | 0,1 ]', 'K10a106'], ['t08201', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (5,2)], m = [ -1,1 | 0,1 ]', 'L10a84'], ['t08267', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (11,8)], m = [ -1,1 | 0,1 ]', 'K11a80'], ['t08403', (-1, 1), 'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (7,2)], m = [ -1,1 | 0,1 ]', 'L11a148'], ['t09016', (-1, 1), 'SFS [D: (2,1) (5,2)] U/m SFS [D: (2,1) (7,2)], m = [ -1,1 | 0,1 ]', 'K11a52'], ['t09267', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (4,1)], m = [ 0,-1 | 1,1 ]', 'L12a529'], ['t09313', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (5,2)], m = [ 0,-1 | 1,1 ]', 'K12a129'], ['t09455', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (4,1)], m = [ 0,-1 | 1,0 ]', 'K12a355'], ['t09704', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (5,3)], m = [ 0,-1 | 1,0 ]', 'K12a271'], ['t09852', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (4,3)], m = [ -1,1 | 0,1 ]', 'K10a106'], ['t09954', (-1, 1), 'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (5,3)], m = [ -1,1 | 0,1 ]', 'L10a55'], ['t09954', (0, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (7,3)], m = [ -1,1 | 0,1 ]', 'K10a87'], ['t10188', (0, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (5,2)], m = [ -1,1 | 0,1 ]', 'K9a6'], ['t10643', (0, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,1) (5,2)], m = [ 1,1 | -1,0 ]', 'L12a363'], ['t10681', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (5,3)], m = [ 0,-1 | 1,0 ]', 'K12a271'], ['t10985', (0, 1), 'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (5,2)], m = [ 1,1 | -1,0 ]', 'K12a57'], ['t11852', (0, 1), 'SFS [RP2/n2: (3,1) (7,-4)]', 'L10a49'], ['t12753', (0, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (5,3)], m = [ -1,1 | 0,1 ]', 'L10a85'], ['v0407', (1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,1)], m = [ 0,-1 | 1,2 ]', 'L11a36'], ['v0434', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,2)], m = [ 0,-1 | 1,2 ]', 'L11a35'], ['v0707', (-2, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (4,1)], m = [ -1,1 | 0,1 ]', 'K10a101'], ['v0759', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,1)], m = [ 2,1 | -1,0 ]', 'L11a85'], ['v0939', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (4,1)], m = [ -1,1 | 0,1 ]', 'K10a91'], ['v0945', (1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,2)], m = [ 2,1 | -1,0 ]', 'L11a84'], ['v1709', (-1, 1), 'SFS [RP2/n2: (2,1) (11,-8)]', 'L10a4'], ['v1810', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (3,2)], m = [ 0,-1 | 1,1 ]', 'K11a22'], ['v1832', (1, 1), 'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (5,3)], m = [ -1,1 | 0,1 ]', 'L10a55'], ['v1839', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,2) (3,2)], m = [ 0,-1 | 1,1 ]', 'L11a57'], ['v1921', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (4,3)], m = [ 0,-1 | 1,0 ]', 'L11a153'], ['v1980', (-1, 1), 'SFS [RP2/n2: (3,1) (4,-1)]', 'L9a9'], ['v1986', (-1, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (7,2)], m = [ 0,-1 | 1,0 ]', 'L11a26'], ['v2215', (1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (7,2)], m = [ -1,1 | 0,1 ]', 'K10a39'], ['v2325', (-1, 1), 'SFS [D: (2,1) (3,2)] U/m SFS [D: (3,1) (3,1)], m = [ 0,-1 | 1,0 ]', 'L11a315'], ['v2930', (-1, 1), 'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (4,1)], m = [ 0,-1 | 1,0 ]', 'L11a164'], ['v3354', (0, 1), 'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (5,2)], m = [ 1,1 | -1,0 ]', 'L11a39']]