In this notebook we classify all integer alternating surgeries on the SnapPy census knots.

For that we start with the list GOERITZ of all knots in the SnapPy Census together with their possible alternating slopes (measured w.r.t. the Seifert framing) and their Goeritz matrices (in fact it will turn out that we do not need the Goeritz matrices it is enough to know the possible integer alternating slopes).

In [3]:
GOERITZ=[['m016', [3, 2, 2], [[18, [[2, 0, -1], [0, 4, -3], [-1, -3, 5]]], [19, [[2, 0, -1, 0], [0, 2, 0, -1], [-1, 0, 4, -2], [0, -1, -2, 3]]]]], ['m071', [5, 2], [[31, [[2, -1, 0], [-1, 6, -1], [0, -1, 3]]], [32, [[2, -1, 0, -1], [-1, 2, -1, 0], [0, -1, 6, -1], [-1, 0, -1, 3]]]]], ['m082', [3, 3, 2, 2], [[27, [[2, 0, -1, 0], [0, 2, 0, -1], [-1, 0, 5, -3], [0, -1, -3, 4]]], [28, [[2, 0, 0, 0, -1], [0, 2, 0, -1, 0], [0, 0, 2, 0, -1], [0, -1, 0, 3, -2], [-1, 0, -1, -2, 4]]]]], ['m103', [5, 3, 2, 2], [[43, [[2, -1, 0, -1], [-1, 3, 0, 0], [0, 0, 4, -1], [-1, 0, -1, 3]]], [44, [[2, 0, 0, -1, -1], [0, 2, -1, 0, -1], [0, -1, 3, 0, 0], [-1, 0, 0, 4, -1], [-1, -1, 0, -1, 3]]]]], ['m118', [4, 3, 2], [[30, [[4, -2, -1], [-2, 6, -2], [-1, -2, 3]]], [31, [[2, -1, 0, 0], [-1, 4, -2, -1], [0, -2, 3, -1], [0, -1, -1, 4]]]]], ['m144', [3, 3, 3, 2, 2], [[36, [[2, 0, 0, -1, 0], [0, 2, -1, 0, 0], [0, -1, 2, 0, -1], [-1, 0, 0, 5, -3], [0, 0, -1, -3, 4]]], [37, [[2, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 3, -2], [-1, 0, 0, -1, -2, 4]]]]], ['m194', [5, 3], [[36, [[2, -1, -1], [-1, 6, -3], [-1, -3, 6]]], [37, [[2, -1, -1, 0], [-1, 2, 0, 0], [-1, 0, 6, -3], [0, 0, -3, 4]]]]], ['m198', [5, 2, 2, 2], [[38, [[2, -1, 0, -1], [-1, 2, 0, 0], [0, 0, 5, -3], [-1, 0, -3, 5]]], [39, [[2, 0, 0, -1, 0], [0, 2, -1, 0, -1], [0, -1, 2, 0, 0], [-1, 0, 0, 5, -2], [0, -1, 0, -2, 3]]]]], ['m239', [4, 3, 2, 2], [[34, [[2, -1, 0, -1], [-1, 4, -1, -1], [0, -1, 4, -1], [-1, -1, -1, 3]]], [35, [[2, 0, -1, 0, 0], [0, 2, 0, -1, 0], [-1, 0, 3, -1, -1], [0, -1, -1, 3, -1], [0, 0, -1, -1, 3]]]]], ['m240', [4, 3, 3], [[36, [[2, 0, 0, -1], [0, 2, 0, -1], [0, 0, 5, -4], [-1, -1, -4, 6]]], [37, [[2, -1, 0, 0, 0], [-1, 2, 0, -1, 0], [0, 0, 2, 0, -1], [0, -1, 0, 5, -3], [0, 0, -1, -3, 4]]]]], ['m270', [5, 3, 3], [[45, [[2, 0, -1, -1], [0, 2, 0, -1], [-1, 0, 4, -2], [-1, -1, -2, 6]]], [46, [[2, -1, 0, -1, 0], [-1, 2, 0, 0, 0], [0, 0, 2, 0, -1], [-1, 0, 0, 4, -2], [0, 0, -1, -2, 4]]]]], ['m276', [5, 4, 2, 2], [[50, [[2, -1, 0, -1], [-1, 4, 0, -2], [0, 0, 3, -2], [-1, -2, -2, 6]]], [51, [[2, 0, -1, 0, 0], [0, 2, -1, 0, -1], [-1, -1, 4, 0, -1], [0, 0, 0, 3, -2], [0, -1, -1, -2, 4]]]]], ['m281', [4, 4, 3, 2], [[46, [[2, 0, 0, -1], [0, 3, -1, 0], [0, -1, 5, -2], [-1, 0, -2, 3]]], [47, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 3, 0, 0], [0, 0, 0, 3, -2], [-1, -1, 0, -2, 4]]]]], ['o9_00133', [5, 5, 5, 5, 5, 2], [[131, [[2, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, 0, 0, 0, 0, 3, -1], [-1, 0, 0, 0, -1, -1, 6]]], [132, [[2, -1, 0, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 0, 0, 3, -1], [-1, 0, 0, 0, 0, -1, -1, 6]]]]], ['o9_00168', [5, 5, 5, 5, 5, 3, 2, 2], [[143, [[2, 0, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 0, 3, -1, 0], [0, 0, 0, 0, 0, -1, 4, 0], [-1, 0, 0, 0, -1, 0, 0, 3]]], [144, [[2, 0, 0, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 0, 0, 3, 0, 0], [0, -1, 0, 0, 0, 0, 0, 3, -2], [0, 0, 0, 0, 0, -1, 0, -2, 4]]]]], ['o9_00644', [3, 3, 3, 3, 3, 3, 3, 2, 2], [[72, [[2, 0, 0, 0, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, 0, -1, 2, 0, -1], [-1, 0, 0, 0, 0, 0, 0, 5, -3], [0, 0, 0, 0, 0, 0, -1, -3, 4]]], [73, [[2, 0, 0, 0, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0, 0], [0, 0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, 0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 0, 0, 0, 0, 3, -2], [-1, 0, 0, 0, 0, 0, 0, -1, -2, 4]]]]], ['o9_00797', [7, 7, 7, 7, 3, 2, 2], [[214, [[2, 0, 0, 0, -1, -1, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 3, -1, -1], [-1, 0, 0, 0, -1, 5, -2], [0, 0, 0, -1, -1, -2, 6]]], [215, [[2, 0, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 0, 3, 0, -1], [0, -1, 0, 0, 0, 0, 3, -1], [-1, 0, 0, 0, -1, -1, -1, 6]]]]], ['o9_00815', [7, 7, 7, 7, 4, 3, 2], [[226, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 5, -2, -1, -1], [0, 0, 0, -2, 5, -2, 0], [0, 0, 0, -1, -2, 3, 0], [0, 0, -1, -1, 0, 0, 3]]], [227, [[2, 0, 0, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 0, 4, -1, -1, -1], [0, 0, 0, 0, -1, 3, -2, 0], [-1, 0, 0, 0, -1, -2, 4, 0], [0, 0, 0, -1, -1, 0, 0, 3]]]]], ['o9_01436', [7, 7, 7, 2, 2], [[157, [[2, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, -1], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 3, 0], [-1, -1, 0, -1, 0, 7]]], [158, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, -1, 0], [0, 0, 2, 0, 0, -1, -1], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, -1, -1, 0, 0, 3, 0], [-1, 0, -1, 0, -1, 0, 7]]]]], ['o9_01496', [7, 7, 7, 5, 2, 2, 2], [[185, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 4, -2, 0], [0, 0, 0, 0, -2, 5, 0], [-1, 0, 0, -1, 0, 0, 3]]], [186, [[2, 0, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0, -1, 0], [0, -1, 2, 0, 0, -1, 0, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, -1, 0, 0, 4, 0, 0], [0, -1, 0, 0, 0, 0, 3, -2], [0, 0, 0, 0, -1, 0, -2, 4]]]]], ['o9_01584', [8, 8, 8, 3, 3, 2, 2], [[219, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 3, 0, 0], [0, -1, 0, 0, 0, 4, 0], [-1, 0, 0, -1, 0, 0, 4]]], [220, [[2, 0, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1, 0, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, -1, -1, 0, 0, 3, 0, 0], [0, -1, 0, 0, 0, 0, 3, -2], [0, 0, 0, 0, -1, 0, -2, 5]]]]], ['o9_01621', [8, 8, 8, 5, 3], [[228, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 4, -2, -2], [-1, 0, 0, -2, 6, -2], [-1, 0, -1, -2, -2, 7]]], [229, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 4, -1, -2], [0, 0, 0, 0, -1, 4, -2], [-1, 0, 0, -1, -2, -2, 7]]]]], ['o9_01680', [8, 8, 8, 3, 2, 2], [[210, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 3, -1, 0], [0, 0, 0, -1, 4, -3], [-1, 0, -1, 0, -3, 8]]], [211, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 3, 0, -1], [0, -1, 0, 0, 0, 3, -2], [0, 0, 0, -1, -1, -2, 7]]]]], ['o9_01765', [8, 8, 8, 5, 3, 3], [[237, [[2, 0, 0, 0, 0, -1, 0], [0, 2, 0, 0, -1, 0, -1], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 4, -1, 0], [-1, 0, 0, 0, -1, 4, 0], [0, -1, 0, -1, 0, 0, 3]]], [238, [[2, -1, 0, 0, 0, 0, -1, 0], [-1, 2, 0, 0, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1, 0, -1], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [0, -1, -1, 0, 0, 4, -1, 0], [-1, 0, 0, 0, 0, -1, 4, 0], [0, 0, -1, 0, -1, 0, 0, 3]]]]], ['o9_01953', [5, 5, 5, 5, 5, 3], [[136, [[2, 0, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [-1, 0, 0, 0, 0, 6, -3], [-1, 0, 0, 0, -1, -3, 6]]], [137, [[2, -1, 0, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, 0, 0, 0, 0, 0, 4, -3], [0, -1, 0, 0, 0, -1, -3, 6]]]]], ['o9_01955', [5, 5, 5, 5, 5, 2, 2, 2], [[138, [[2, -1, 0, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 0, 0, 5, -3], [0, 0, 0, 0, 0, -1, -3, 5]]], [139, [[2, 0, 0, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 0, 0, 3, -2], [-1, 0, 0, 0, 0, 0, -1, -2, 5]]]]], ['o9_02255', [10, 10, 3, 3, 2, 2], [[227, [[2, 0, 0, -1, -1, 0], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, -1, 0], [-1, 0, 0, -1, 5, -2], [0, -1, -1, 0, -2, 7]]], [228, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 2, 0, 0, -1], [-1, -1, -1, 0, 3, 0, 0], [0, -1, 0, 0, 0, 3, -1], [-1, 0, -1, -1, 0, -1, 7]]]]], ['o9_02340', [10, 10, 4, 3, 3], [[236, [[2, 0, 0, -1, -1, 0], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, -1], [-1, -1, 0, 0, 6, -3], [0, 0, -1, -1, -3, 7]]], [237, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, -1, -1, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, -1, 0, 3, 0, -1], [0, 0, -1, 0, 0, 4, -2], [0, -1, 0, -1, -1, -2, 7]]]]], ['o9_02350', [10, 10, 7, 3, 3, 2], [[272, [[2, 0, -1, 0, 0, -1], [0, 2, 0, 0, 0, -1], [-1, 0, 6, -2, -2, 0], [0, 0, -2, 5, -2, 0], [0, 0, -2, -2, 4, 0], [-1, -1, 0, 0, 0, 3]]], [273, [[2, 0, 0, 0, 0, -1, 0], [0, 2, 0, -1, 0, 0, -1], [0, 0, 2, 0, 0, 0, -1], [0, -1, 0, 5, -1, -2, 0], [0, 0, 0, -1, 3, -2, 0], [-1, 0, 0, -2, -2, 5, 0], [0, -1, -1, 0, 0, 0, 3]]]]], ['o9_02386', [10, 10, 6, 4, 3], [[263, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1], [0, 0, 5, -2, -1, -1], [-1, 0, -2, 6, -3, 0], [0, 0, -1, -3, 4, 0], [0, -1, -1, 0, 0, 3]]], [264, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, 0, -1], [0, 0, 0, 5, -2, -1, -1], [0, 0, 0, -2, 4, -2, 0], [-1, 0, 0, -1, -2, 4, 0], [0, 0, -1, -1, 0, 0, 3]]]]], ['o9_02655', [9, 9, 4, 3, 2, 2], [[196, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1], [0, 0, 3, -1, -1, 0], [-1, 0, -1, 5, -2, 0], [0, 0, -1, -2, 3, 0], [-1, -1, 0, 0, 0, 4]]], [197, [[2, 0, 0, 0, 0, -1, 0], [0, 2, 0, 0, -1, 0, -1], [0, 0, 2, 0, 0, 0, -1], [0, 0, 0, 3, -1, -1, 0], [0, -1, 0, -1, 3, -1, 0], [-1, 0, 0, -1, -1, 3, 0], [0, -1, -1, 0, 0, 0, 4]]]]], ['o9_02696', [9, 9, 5, 4, 2], [[208, [[2, 0, 0, 0, -1], [0, 3, -1, -1, 0], [0, -1, 5, -1, -1], [0, -1, -1, 4, 0], [-1, 0, -1, 0, 3]]], [209, [[2, 0, -1, 0, -1, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 6, -1, -1, -1], [0, 0, -1, 3, -1, 0], [-1, 0, -1, -1, 3, 0], [0, -1, -1, 0, 0, 3]]]]], ['o9_02706', [9, 9, 9, 4, 3, 2], [[273, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 5, -2, -1, -1], [0, 0, -2, 3, 0, -1], [0, 0, -1, 0, 3, -2], [0, -1, -1, -1, -2, 7]]], [274, [[2, 0, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 4, -1, -2, -1], [0, 0, 0, -1, 3, 0, -1], [-1, 0, 0, -2, 0, 3, 0], [-1, 0, -1, -1, -1, 0, 6]]]]], ['o9_02735', [9, 9, 9, 5, 4, 2, 2], [[293, [[2, 0, 0, 0, -1, -1, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 4, -1, -1, -1], [-1, 0, 0, -1, 5, -2, 0], [-1, 0, 0, -1, -2, 4, 0], [0, 0, -1, -1, 0, 0, 3]]], [294, [[2, 0, 0, 0, -1, 0, -1, 0], [0, 2, 0, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, 0, 0, 0, -1], [-1, 0, 0, 0, 4, 0, -1, -1], [0, -1, 0, 0, 0, 3, -1, 0], [-1, 0, 0, 0, -1, -1, 3, 0], [0, 0, 0, -1, -1, 0, 0, 3]]]]], ['o9_02772', [9, 2, 2, 2], [[95, [[2, 0, 0, -1, 0], [0, 2, -1, 0, -1], [0, -1, 2, -1, 0], [-1, 0, -1, 8, 0], [0, -1, 0, 0, 3]]], [96, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, -1], [0, 0, -1, 2, -1, 0], [0, -1, 0, -1, 8, 0], [-1, 0, -1, 0, 0, 3]]]]], ['o9_02786', [4, 4, 4, 4, 4, 3, 2, 2], [[98, [[2, 0, 0, 0, 0, -1, -1, 0], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 0, 3, -1, 0], [-1, 0, 0, 0, 0, -1, 5, -2], [0, 0, 0, 0, -1, 0, -2, 3]]], [99, [[2, 0, 0, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 0, 0, 3, 0, 0], [0, -1, 0, 0, 0, 0, 0, 3, -1], [-1, 0, 0, 0, 0, -1, 0, -1, 3]]]]], ['o9_02794', [4, 4, 4, 4, 4, 4, 3, 2], [[110, [[2, -1, 0, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [0, 0, 0, 0, 0, 3, -1, 0], [0, 0, 0, 0, 0, -1, 5, -2], [0, 0, 0, 0, -1, 0, -2, 3]]], [111, [[2, 0, 0, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 0, 0, 3, -2], [-1, 0, 0, 0, 0, -1, 0, -2, 4]]]]], ['o9_03032', [9, 7, 2, 2, 2, 2], [[147, [[2, -1, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 3, 0, 0], [0, 0, 0, 0, 6, -3], [-1, 0, 0, 0, -3, 5]]], [148, [[2, 0, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0, -1], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 3, 0, 0], [-1, 0, 0, 0, 0, 6, -3], [-1, -1, 0, 0, 0, -3, 5]]]]], ['o9_03108', [9, 2, 2, 2, 2, 2], [[102, [[2, -1, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 2, 0, 0], [0, 0, 0, 0, 7, -3], [-1, 0, 0, 0, -3, 5]]], [103, [[2, 0, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0, -1], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, 0], [-1, 0, 0, 0, 0, 7, -2], [0, -1, 0, 0, 0, -2, 3]]]]], ['o9_03118', [11, 11, 5, 4, 2, 2], [[292, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1], [0, 0, 4, -1, -2, -1], [-1, 0, -1, 5, -1, -2], [0, 0, -2, -1, 3, 0], [0, -1, -1, -2, 0, 6]]], [293, [[2, 0, 0, -1, 0, -1, 0], [0, 2, 0, 0, -1, 0, -1], [0, 0, 2, 0, 0, 0, -1], [-1, 0, 0, 4, 0, -1, 0], [0, -1, 0, 0, 3, -1, 0], [-1, 0, 0, -1, -1, 3, 0], [0, -1, -1, 0, 0, 0, 4]]]]], ['o9_03133', [11, 3, 3, 3, 2, 2], [[157, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, 0, -1, 0], [-1, 0, 0, 5, 0, 0], [0, 0, -1, 0, 4, 0], [-1, -1, 0, 0, 0, 3]]], [158, [[2, 0, 0, 0, 0, -1, -1], [0, 2, 0, 0, -1, 0, -1], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 2, 0, -1, 0], [0, -1, 0, 0, 5, 0, 0], [-1, 0, 0, -1, 0, 4, 0], [-1, -1, -1, 0, 0, 0, 3]]]]], ['o9_03149', [11, 11, 6, 5, 2, 2], [[312, [[2, 0, -1, -1, 0, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 6, -1, -1, -1], [-1, 0, -1, 5, -2, 0], [0, 0, -1, -2, 3, 0], [0, -1, -1, 0, 0, 3]]], [313, [[2, 0, 0, 0, 0, -1, 0], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, 0, 0, 0, -1], [0, 0, 0, 5, -1, -1, -1], [0, -1, 0, -1, 3, -1, 0], [-1, -1, 0, -1, -1, 4, 0], [0, 0, -1, -1, 0, 0, 3]]]]], ['o9_03162', [11, 11, 4, 4, 3, 2], [[288, [[2, 0, -1, 0, -1, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 5, -2, 0, -1], [0, 0, -2, 5, -2, 0], [-1, 0, 0, -2, 3, 0], [0, -1, -1, 0, 0, 4]]], [289, [[2, 0, 0, 0, 0, -1, 0], [0, 2, 0, -1, 0, -1, 0], [0, 0, 2, 0, 0, 0, -1], [0, -1, 0, 4, -1, 0, -1], [0, 0, 0, -1, 3, -2, 0], [-1, -1, 0, 0, -2, 4, 0], [0, 0, -1, -1, 0, 0, 4]]]]], ['o9_03188', [11, 11, 7, 4, 2, 2], [[316, [[2, 0, -1, 0, 0, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 4, 0, -2, 0], [0, 0, 0, 3, -1, -1], [0, 0, -2, -1, 5, 0], [0, -1, 0, -1, 0, 3]]], [317, [[2, 0, 0, -1, 0, -1, 0], [0, 2, 0, -1, 0, 0, 0], [0, 0, 2, 0, 0, 0, -1], [-1, -1, 0, 4, 0, -2, 0], [0, 0, 0, 0, 3, -1, -1], [-1, 0, 0, -2, -1, 5, 0], [0, 0, -1, 0, -1, 0, 3]]]]], ['o9_03288', [11, 4, 3, 3], [[157, [[2, 0, 0, -1, 0], [0, 2, -1, -1, 0], [0, -1, 6, 0, -1], [-1, -1, 0, 6, -4], [0, 0, -1, -4, 5]]], [158, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, -1, -1, 0], [0, 0, -1, 6, 0, -1], [0, 0, -1, 0, 4, -3], [0, -1, 0, -1, -3, 5]]]]], ['o9_03313', [11, 8, 3, 3], [[205, [[2, 0, -1, -1, 0], [0, 2, 0, -1, 0], [-1, 0, 8, -2, -3], [-1, -1, -2, 6, -2], [0, 0, -3, -2, 5]]], [206, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, -1, 0], [0, -1, 0, 8, -2, -3], [0, 0, -1, -2, 4, -1], [-1, 0, 0, -3, -1, 5]]]]], ['o9_03412', [11, 7, 4, 4], [[205, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, -1], [0, 0, -1, 3, 0, 0], [0, -1, 0, 0, 4, -1], [0, 0, -1, 0, -1, 5]]], [206, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, -1], [0, 0, 0, -1, 3, 0, 0], [0, 0, -1, 0, 0, 4, -1], [-1, 0, 0, -1, 0, -1, 5]]]]], ['o9_03526', [6, 5, 5], [[90, [[2, -1, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 2, 0, -1], [0, 0, 0, 0, 7, -6], [0, 0, -1, -1, -6, 8]]], [91, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, -1, 0], [0, 0, 0, 0, 2, 0, -1], [0, 0, 0, -1, 0, 7, -5], [0, 0, 0, 0, -1, -5, 6]]]]], ['o9_03586', [7, 7, 7, 2, 2, 2, 2], [[164, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 5, -3], [0, 0, 0, 0, -1, -3, 6]]], [165, [[2, 0, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 0, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, 0, 0, -1, 0, 0, 3, -2], [-1, 0, 0, 0, 0, -1, -2, 6]]]]], ['o9_03622', [7, 7, 7, 5, 2], [[178, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 7, -2, -4], [0, 0, 0, -2, 3, 0], [-1, 0, -1, -4, 0, 7]]], [179, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, 0, 0, 0, 5, -1, -4], [-1, 0, 0, 0, -1, 3, 0], [0, -1, 0, -1, -4, 0, 7]]]]], ['o9_03802', [11, 3, 3, 3], [[150, [[2, 0, 0, -1, -1], [0, 2, -1, 0, -1], [0, -1, 2, -1, 0], [-1, 0, -1, 8, -2], [-1, -1, 0, -2, 6]]], [151, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 2, -1, 0, -1], [0, 0, -1, 2, -1, 0], [-1, 0, 0, -1, 8, -2], [0, 0, -1, 0, -2, 4]]]]], ['o9_03833', [9, 7, 2, 2], [[140, [[2, 0, -1, 0, -1], [0, 2, 0, -1, 0], [-1, 0, 8, 0, -5], [0, -1, 0, 3, -2], [-1, 0, -5, -2, 8]]], [141, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, -1, 0], [0, 0, 2, 0, -1, 0], [-1, 0, 0, 8, 0, -5], [0, -1, -1, 0, 3, -1], [0, 0, 0, -5, -1, 6]]]]], ['o9_03932', [9, 5, 5], [[135, [[2, -1, 0, 0, -1, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 2, 0, -1], [-1, 0, 0, 0, 4, -2], [0, 0, -1, -1, -2, 8]]], [136, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, 0], [0, 0, 0, 0, 2, 0, -1], [-1, 0, 0, 0, 0, 4, -2], [0, 0, 0, 0, -1, -2, 6]]]]], ['o9_04106', [12, 5, 5, 2, 2, 2], [[207, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, -1, -1], [0, -1, 0, 4, 0, 0], [0, 0, -1, 0, 5, -1], [-1, 0, -1, 0, -1, 4]]], [208, [[2, 0, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0, -1], [0, -1, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, -1, -1], [0, 0, -1, 0, 4, 0, 0], [-1, 0, 0, -1, 0, 5, -1], [-1, -1, 0, -1, 0, -1, 4]]]]], ['o9_04205', [12, 7, 5, 2], [[224, [[2, -1, -1, 0, 0], [-1, 8, -3, 0, -2], [-1, -3, 7, -2, 0], [0, 0, -2, 3, -1], [0, -2, 0, -1, 3]]], [225, [[2, -1, 0, 0, -1, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 8, -3, 0, -2], [0, 0, -3, 5, -1, 0], [-1, 0, 0, -1, 3, -1], [0, 0, -2, 0, -1, 3]]]]], ['o9_04245', [13, 5, 5, 3], [[230, [[2, 0, -1, -1, 0], [0, 2, -1, 0, -1], [-1, -1, 8, -2, -1], [-1, 0, -2, 6, -2], [0, -1, -1, -2, 4]]], [231, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, -1, 0, -1], [0, -1, -1, 8, -2, -1], [0, 0, 0, -2, 4, -1], [-1, 0, -1, -1, -1, 4]]]]], ['o9_04269', [5, 5, 5, 5, 4, 2], [[121, [[2, -1, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 6, -3, -2], [0, 0, 0, -3, 5, -1], [0, 0, -1, -2, -1, 4]]], [122, [[2, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, 0, 0, 0, 4, -1, 0], [0, 0, 0, 0, -1, 3, -1], [-1, 0, 0, -1, 0, -1, 3]]]]], ['o9_04313', [13, 6, 5, 2, 2], [[239, [[2, 0, -1, 0, 0], [0, 8, -1, -3, -1], [-1, -1, 5, -1, -2], [0, -3, -1, 4, 0], [0, -1, -2, 0, 3]]], [240, [[2, 0, 0, 0, -1, -1], [0, 2, 0, -1, 0, 0], [0, 0, 8, -1, -3, -1], [0, -1, -1, 3, 0, -1], [-1, 0, -3, 0, 4, 0], [-1, 0, -1, -1, 0, 3]]]]], ['o9_04431', [13, 7, 6, 2, 2, 2], [[267, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 3, 0, -1, 0], [0, 0, 0, 3, -1, -1], [-1, 0, -1, -1, 7, -2], [0, -1, 0, -1, -2, 4]]], [268, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, -1, 0], [0, -1, 2, 0, 0, 0, 0], [0, 0, 0, 3, 0, 0, -1], [-1, 0, 0, 0, 3, -1, -1], [0, -1, 0, 0, -1, 3, 0], [-1, 0, 0, -1, -1, 0, 5]]]]], ['o9_04435', [9, 8, 2, 2, 2, 2], [[162, [[2, -1, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 4, 0, -2], [0, 0, 0, 0, 5, -4], [-1, 0, 0, -2, -4, 8]]], [163, [[2, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0, -1], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [-1, 0, 0, -1, 4, 0, -1], [0, 0, 0, 0, 0, 5, -4], [0, -1, 0, 0, -1, -4, 6]]]]], ['o9_04438', [13, 8, 5, 3, 2, 2], [[276, [[2, 0, -1, 0, 0, 0], [0, 3, 0, 0, -1, 0], [-1, 0, 4, 0, -1, -2], [0, 0, 0, 4, -1, -3], [0, -1, -1, -1, 4, 0], [0, 0, -2, -3, 0, 5]]], [277, [[2, 0, 0, -1, 0, -1, 0], [0, 2, 0, -1, -1, 0, 0], [0, 0, 3, 0, 0, -1, 0], [-1, -1, 0, 4, 0, 0, -2], [0, -1, 0, 0, 3, 0, 0], [-1, 0, -1, 0, 0, 4, -1], [0, 0, 0, -2, 0, -1, 3]]]]], ['o9_05021', [8, 8, 8, 3, 3], [[212, [[2, 0, 0, 0, -1, -1], [0, 2, 0, 0, -1, -1], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [-1, -1, 0, 0, 6, -2], [-1, -1, 0, -1, -2, 7]]], [213, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1, -1], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 4, -2], [0, -1, -1, 0, -1, -2, 7]]]]], ['o9_05177', [8, 8, 8, 5, 3, 2, 2], [[235, [[2, 0, 0, 0, -1, -1, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 4, -1, -2, -1], [-1, 0, 0, -1, 5, 0, 0], [-1, 0, 0, -2, 0, 3, 0], [0, 0, -1, -1, 0, 0, 3]]], [236, [[2, 0, 0, 0, -1, 0, 0, 0], [0, 2, 0, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, 0, 0, 0, -1], [-1, 0, 0, 0, 4, 0, -2, -1], [0, -1, 0, 0, 0, 3, -2, 0], [0, 0, 0, 0, -2, -2, 4, 0], [0, 0, 0, -1, -1, 0, 0, 3]]]]], ['o9_05229', [12, 5, 5, 2], [[200, [[2, 0, -1, 0, -1], [0, 2, -1, 0, -1], [-1, -1, 8, 0, -3], [0, 0, 0, 3, -2], [-1, -1, -3, -2, 7]]], [201, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, -1], [-1, 0, -1, 8, 0, -3], [0, -1, 0, 0, 3, -1], [0, 0, -1, -3, -1, 5]]]]], ['o9_05357', [11, 8, 3, 3, 2, 2], [[212, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, -1, 0], [0, -1, 3, 0, 0, 0], [0, 0, 0, 7, -1, -3], [-1, -1, 0, -1, 3, 0], [-1, 0, 0, -3, 0, 4]]], [213, [[2, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 3, 0, 0, 0], [0, 0, 0, 0, 5, -2, -3], [0, -1, 0, 0, -2, 3, 0], [-1, 0, -1, 0, -3, 0, 5]]]]], ['o9_05426', [7, 7, 7, 7, 3, 3, 2], [[219, [[2, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 3, -1, 0], [0, 0, 0, 0, -1, 5, -2], [0, 0, 0, -1, 0, -2, 4]]], [220, [[2, 0, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 0, 3, -2], [-1, 0, 0, 0, -1, 0, -2, 5]]]]], ['o9_05483', [7, 7, 7, 7, 4, 2, 2], [[221, [[2, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 6, -2, -2], [0, 0, 0, 0, -2, 3, -1], [0, 0, 0, -1, -2, -1, 5]]], [222, [[2, 0, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 0, 4, -2, -1], [0, 0, 0, 0, 0, -2, 3, -1], [-1, 0, 0, 0, -1, -1, -1, 5]]]]], ['o9_05562', [13, 5, 5, 3, 2, 2], [[237, [[2, 0, 0, 0, -1, -1], [0, 2, 0, -1, 0, -1], [0, 0, 4, 0, -1, 0], [0, -1, 0, 6, -1, -1], [-1, 0, -1, -1, 3, 0], [-1, -1, 0, -1, 0, 3]]], [238, [[2, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 4, 0, 0, -1], [0, 0, -1, 0, 4, -2, -1], [0, -1, 0, 0, -2, 3, 0], [-1, 0, -1, -1, -1, 0, 4]]]]], ['o9_05618', [12, 7, 5, 2, 2, 2], [[231, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 3, 0, -1, 0], [0, 0, 0, 6, -1, -2], [-1, 0, -1, -1, 4, 0], [0, -1, 0, -2, 0, 3]]], [232, [[2, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, -1, 0], [0, -1, 2, 0, 0, 0, 0], [0, 0, 0, 3, 0, 0, -1], [0, 0, 0, 0, 4, -2, -2], [0, -1, 0, 0, -2, 3, 0], [-1, 0, 0, -1, -2, 0, 5]]]]], ['o9_05860', [10, 10, 3, 3, 3, 2], [[232, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 3, -1, 0], [0, 0, 0, -1, 5, -2], [0, 0, -1, 0, -2, 5]]], [233, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, -1, 0, 3, 0, 0], [0, 0, 0, 0, 0, 3, -2], [-1, 0, 0, -1, 0, -2, 6]]]]], ['o9_05970', [13, 8, 5, 3], [[269, [[2, -1, 0, -1, 0], [-1, 8, -1, -2, -2], [0, -1, 4, -2, 0], [-1, -2, -2, 6, -1], [0, -2, 0, -1, 3]]], [270, [[2, -1, -1, 0, 0, 0], [-1, 2, 0, -1, 0, 0], [-1, 0, 8, -1, -2, -2], [0, -1, -1, 4, -1, 0], [0, 0, -2, -1, 4, -1], [0, 0, -2, 0, -1, 3]]]]], ['o9_06060', [9, 9, 4, 4, 2], [[199, [[2, 0, -1, -1, 0], [0, 2, 0, 0, -1], [-1, 0, 6, -2, -2], [-1, 0, -2, 5, -1], [0, -1, -2, -1, 5]]], [200, [[2, 0, 0, 0, 0, -1], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, 0], [0, 0, 0, -1, 3, -1], [-1, 0, -1, 0, -1, 4]]]]], ['o9_06128', [10, 10, 7, 3, 2, 2], [[267, [[2, 0, -1, 0, 0, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 7, -2, -3, 0], [0, 0, -2, 4, -1, -1], [0, 0, -3, -1, 4, 0], [0, -1, 0, -1, 0, 3]]], [268, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, -1, 0, 0, 0], [0, 0, 2, 0, 0, 0, -1], [0, -1, 0, 5, -1, -3, 0], [-1, 0, 0, -1, 4, -1, -1], [0, 0, 0, -3, -1, 4, 0], [0, 0, -1, 0, -1, 0, 3]]]]], ['o9_06154', [9, 9, 5, 3, 2, 2], [[205, [[2, 0, 0, -1, -1, 0], [0, 2, 0, 0, 0, -1], [0, 0, 4, -1, -2, 0], [-1, 0, -1, 5, 0, -2], [-1, 0, -2, 0, 3, 0], [0, -1, 0, -2, 0, 4]]], [206, [[2, 0, 0, -1, 0, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, 0, 0, 0, -1], [-1, 0, 0, 4, 0, -2, 0], [0, -1, 0, 0, 3, 0, -1], [0, -1, 0, -2, 0, 3, 0], [-1, 0, -1, 0, -1, 0, 4]]]]], ['o9_06248', [11, 11, 4, 4, 2, 2], [[283, [[2, 0, 0, -1, 0, 0], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 6, -1, -2], [0, -1, 0, -1, 3, -1], [0, 0, -1, -2, -1, 6]]], [284, [[2, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, -1, -1, 0], [0, 0, 0, 2, 0, 0, -1], [0, -1, -1, 0, 4, -1, -1], [0, 0, -1, 0, -1, 3, -1], [-1, 0, 0, -1, -1, -1, 6]]]]], ['o9_06301', [11, 11, 7, 4, 3, 2], [[321, [[2, 0, 0, 0, 0, -1], [0, 6, -2, -1, -2, -1], [0, -2, 5, -1, 0, 0], [0, -1, -1, 3, -1, 0], [0, -2, 0, -1, 3, 0], [-1, -1, 0, 0, 0, 3]]], [322, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, 0, -1], [0, 0, 5, -1, -1, -2, -1], [0, 0, -1, 3, 0, 0, 0], [-1, 0, -1, 0, 3, -1, 0], [0, 0, -2, 0, -1, 3, 0], [0, -1, -1, 0, 0, 0, 3]]]]], ['o9_07790', [11, 3, 3, 2, 2], [[148, [[2, 0, -1, -1, 0], [0, 2, -1, 0, -1], [-1, -1, 7, 0, 0], [-1, 0, 0, 5, -3], [0, -1, 0, -3, 4]]], [149, [[2, 0, 0, 0, 0, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, -1, 0, -1], [0, -1, -1, 7, 0, 0], [0, -1, 0, 0, 3, -2], [-1, 0, -1, 0, -2, 4]]]]], ['o9_07893', [12, 5, 4, 3, 2], [[199, [[6, 0, -1, -1, -1], [0, 3, 0, -2, -1], [-1, 0, 3, -1, 0], [-1, -2, -1, 5, -1], [-1, -1, 0, -1, 3]]], [200, [[2, 0, -1, -1, 0, 0], [0, 6, 0, -1, -1, -1], [-1, 0, 3, 0, -1, -1], [-1, -1, 0, 3, 0, 0], [0, -1, -1, 0, 3, -1], [0, -1, -1, 0, -1, 3]]]]], ['o9_07943', [7, 7, 7, 3], [[159, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [0, 0, 0, 0, 4, -1], [-1, 0, 0, -1, -1, 6]]], [160, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 4, -1], [-1, 0, 0, 0, -1, -1, 6]]]]], ['o9_07945', [12, 7, 5, 3, 2], [[232, [[3, 0, 0, 0, -1], [0, 3, -1, -1, -1], [0, -1, 5, -1, -2], [0, -1, -1, 3, -1], [-1, -1, -2, -1, 6]]], [233, [[2, 0, 0, -1, 0, -1], [0, 3, 0, 0, -1, 0], [0, 0, 4, -1, -1, -1], [-1, 0, -1, 3, 0, -1], [0, -1, -1, 0, 4, -1], [-1, 0, -1, -1, -1, 4]]]]], ['o9_08006', [11, 8, 3, 3, 3], [[214, [[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [0, 0, -1, 3, 0, 0], [-1, 0, 0, 0, 5, -2], [0, -1, 0, 0, -2, 5]]], [215, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 3, 0, 0], [0, -1, 0, 0, 0, 5, -2], [-1, 0, -1, 0, 0, -2, 5]]]]], ['o9_08042', [7, 7, 7, 4, 3, 3], [[183, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, 0, -1], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 3, -1, 0], [0, 0, 0, 0, -1, 5, 0], [0, -1, 0, -1, 0, 0, 3]]], [184, [[2, -1, 0, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, -1, -1, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, -1, 0, 0, 3, 0, 0], [0, 0, -1, 0, 0, 0, 4, -3], [0, 0, 0, 0, -1, 0, -3, 5]]]]], ['o9_08224', [7, 7, 7, 3, 2], [[161, [[2, -1, 0, 0, 0], [-1, 2, 0, 0, -1], [0, 0, 3, -1, -1], [0, 0, -1, 5, -2], [0, -1, -1, -2, 6]]], [162, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 3, 0, -1], [0, 0, 0, 0, 3, -2], [-1, 0, -1, -1, -2, 7]]]]], ['o9_08302', [7, 7, 7, 4, 3, 2, 2], [[181, [[2, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 3, -1, -1, -1], [-1, 0, 0, -1, 5, -2, 0], [0, 0, 0, -1, -2, 3, 0], [0, 0, -1, -1, 0, 0, 3]]], [182, [[2, 0, 0, 0, 0, 0, -1, 0], [0, 2, 0, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 0, 3, -1, -1, -1], [0, -1, 0, 0, -1, 3, -1, 0], [-1, 0, 0, 0, -1, -1, 3, 0], [0, 0, 0, -1, -1, 0, 0, 3]]]]], ['o9_08477', [4, 4, 4, 4, 4, 3, 3], [[100, [[2, 0, 0, 0, 0, 0, -1, 0], [0, 2, 0, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [-1, -1, 0, 0, 0, 0, 6, -4], [0, 0, 0, 0, 0, -1, -4, 5]]], [101, [[2, -1, 0, 0, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 0, 0, 4, -3], [-1, 0, 0, 0, 0, 0, -1, -3, 5]]]]], ['o9_08647', [14, 5, 5, 4, 2, 2], [[271, [[2, 0, 0, 0, -1, -1], [0, 2, 0, -1, 0, -1], [0, 0, 4, 0, -1, 0], [0, -1, 0, 3, -1, 0], [-1, 0, -1, -1, 6, -2], [-1, -1, 0, 0, -2, 4]]], [272, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 4, 0, 0, -1], [-1, 0, -1, 0, 3, -1, 0], [0, -1, 0, 0, -1, 3, 0], [-1, 0, -1, -1, 0, 0, 4]]]]], ['o9_08765', [7, 7, 7, 4, 2], [[168, [[2, -1, 0, 0, 0], [-1, 2, 0, 0, -1], [0, 0, 5, -2, -2], [0, 0, -2, 5, -2], [0, -1, -2, -2, 6]]], [169, [[2, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 4, -1, -2], [0, 0, 0, -1, 3, -2], [-1, 0, -1, -2, -2, 7]]]]], ['o9_08771', [14, 9, 5, 3, 2], [[316, [[8, -1, -1, -2, -2], [-1, 3, -1, 0, 0], [-1, -1, 5, -1, -2], [-2, 0, -1, 3, 0], [-2, 0, -2, 0, 4]]], [317, [[2, 0, 0, 0, -1, -1], [0, 8, -1, -1, -2, -2], [0, -1, 3, -1, 0, 0], [0, -1, -1, 3, 0, -1], [-1, -2, 0, 0, 3, 0], [-1, -2, 0, -1, 0, 4]]]]], ['o9_08776', [14, 6, 5, 3, 2], [[271, [[7, -1, 0, -2, -1], [-1, 3, -1, 0, 0], [0, -1, 5, -1, -3], [-2, 0, -1, 3, 0], [-1, 0, -3, 0, 4]]], [272, [[2, 0, -1, 0, 0, -1], [0, 7, -1, 0, -2, -1], [-1, -1, 3, 0, 0, 0], [0, 0, 0, 3, -2, -1], [0, -2, 0, -2, 4, 0], [-1, -1, 0, -1, 0, 3]]]]], ['o9_08828', [13, 5, 5, 3, 3], [[239, [[2, 0, 0, 0, -1, 0], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, -1, -1], [0, -1, 0, 4, 0, 0], [-1, 0, -1, 0, 4, 0], [0, -1, -1, 0, 0, 4]]], [240, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, -1, 0], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 2, 0, -1, -1], [0, 0, -1, 0, 4, 0, 0], [0, -1, 0, -1, 0, 4, 0], [-1, 0, -1, -1, 0, 0, 4]]]]], ['o9_08831', [7, 7, 7, 3, 3, 2, 2], [[174, [[2, 0, 0, 0, -1, -1, 0], [0, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 3, -1, 0], [-1, 0, 0, 0, -1, 5, -2], [0, 0, 0, -1, 0, -2, 4]]], [175, [[2, 0, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1, 0, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, -1, -1, 0, 0, 3, 0, 0], [0, -1, 0, 0, 0, 0, 3, -1], [-1, 0, 0, 0, -1, 0, -1, 4]]]]], ['o9_08852', [14, 8, 6, 3, 3], [[316, [[2, 0, 0, 0, -1, -1], [0, 2, 0, 0, -1, -1], [0, 0, 3, 0, -1, 0], [0, 0, 0, 4, -2, -1], [-1, -1, -1, -2, 7, -1], [-1, -1, 0, -1, -1, 4]]], [317, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1, -1], [0, 0, 0, 3, 0, -1, 0], [0, -1, 0, 0, 4, -1, -1], [0, 0, -1, -1, -1, 5, -1], [-1, 0, -1, 0, -1, -1, 4]]]]], ['o9_08875', [13, 8, 5, 2, 2], [[267, [[2, -1, 0, -1, 0], [-1, 7, -2, 0, -2], [0, -2, 4, -1, 0], [-1, 0, -1, 5, -3], [0, -2, 0, -3, 5]]], [268, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, -1, 0], [0, -1, 7, -2, 0, -2], [-1, 0, -2, 4, 0, 0], [0, -1, 0, 0, 3, -2], [-1, 0, -2, 0, -2, 5]]]]], ['o9_09213', [5, 5, 5, 5, 5, 4, 2, 2], [[150, [[2, 0, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 0, 6, -2, -2], [0, 0, 0, 0, 0, -2, 3, 0], [-1, 0, 0, 0, -1, -2, 0, 4]]], [151, [[2, 0, 0, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 0, 0, 4, -1, 0], [0, -1, 0, 0, 0, 0, -1, 3, -1], [-1, 0, 0, 0, 0, -1, 0, -1, 3]]]]], ['o9_09465', [13, 4, 4, 3, 2], [[215, [[2, -1, 0, 0, -1], [-1, 8, -1, -2, 0], [0, -1, 5, -1, -2], [0, -2, -1, 3, 0], [-1, 0, -2, 0, 3]]], [216, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, -1], [0, -1, 8, -1, -2, 0], [0, 0, -1, 3, 0, -1], [-1, 0, -2, 0, 3, 0], [-1, -1, 0, -1, 0, 3]]]]], ['o9_09808', [13, 9, 4, 4, 2, 2], [[291, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, -1, 0], [0, -1, 3, 0, 0, 0], [0, 0, 0, 4, -1, -2], [-1, -1, 0, -1, 6, -2], [-1, 0, 0, -2, -2, 5]]], [292, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 3, 0, 0, 0], [-1, 0, 0, 0, 4, -1, -2], [0, -1, 0, 0, -1, 3, 0], [-1, 0, -1, 0, -2, 0, 5]]]]], ['o9_10696', [9, 4], [[101, [[2, -1, 0, 0, 0], [-1, 2, -1, 0, 0], [0, -1, 2, -1, 0], [0, 0, -1, 6, -1], [0, 0, 0, -1, 5]]], [102, [[2, -1, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 2, -1, 0], [0, 0, 0, -1, 6, -1], [-1, 0, 0, 0, -1, 5]]]]], ['o9_11248', [11, 4, 4, 4], [[172, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, -1, 0, -1], [0, 0, -1, 2, 0, 0], [-1, 0, 0, 0, 5, -2], [0, -1, -1, 0, -2, 7]]], [173, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, 0], [0, 0, 0, 2, -1, 0, -1], [0, 0, 0, -1, 2, 0, 0], [-1, 0, 0, 0, 0, 5, -2], [0, 0, 0, -1, 0, -2, 5]]]]], ['o9_11467', [11, 11, 5, 3, 3], [[287, [[2, 0, 0, 0, -1, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -2, -1], [-1, -1, 0, -2, 6, -1], [-1, 0, -1, -1, -1, 6]]], [288, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, -1, -1, 0], [0, 0, 0, 2, 0, 0, -1], [0, -1, -1, 0, 4, -1, -1], [0, 0, -1, 0, -1, 4, -1], [-1, 0, 0, -1, -1, -1, 6]]]]], ['o9_11560', [11, 11, 6, 5, 3, 2], [[317, [[2, 0, 0, 0, 0, -1], [0, 4, 0, -1, -1, -1], [0, 0, 6, -2, -3, 0], [0, -1, -2, 3, 0, 0], [0, -1, -3, 0, 4, 0], [-1, -1, 0, 0, 0, 3]]], [318, [[2, 0, -1, 0, -1, 0, 0], [0, 2, 0, 0, 0, 0, -1], [-1, 0, 4, 0, 0, -1, -1], [0, 0, 0, 3, 0, -1, 0], [-1, 0, 0, 0, 3, -2, 0], [0, 0, -1, -1, -2, 4, 0], [0, -1, -1, 0, 0, 0, 3]]]]], ['o9_11570', [11, 3, 3, 3, 3], [[159, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [0, 0, -1, 2, 0, 0], [-1, 0, 0, 0, 6, -2], [-1, -1, 0, 0, -2, 6]]], [160, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, 0], [-1, 0, 0, 0, 0, 6, -2], [0, 0, -1, 0, 0, -2, 4]]]]], ['o9_11685', [10, 3, 3, 3, 2, 2], [[136, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, 0, -1, 0], [-1, 0, 0, 6, -1, -1], [0, 0, -1, -1, 4, 0], [-1, -1, 0, -1, 0, 3]]], [137, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1, -1], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 2, 0, 0, 0], [-1, 0, 0, 0, 5, -1, 0], [0, -1, 0, 0, -1, 3, 0], [-1, -1, -1, 0, 0, 0, 3]]]]], ['o9_11795', [10, 3, 3, 2], [[123, [[2, -1, 0, -1], [-1, 7, -2, 0], [0, -2, 5, -1], [-1, 0, -1, 3]]], [124, [[2, 0, -1, 0, -1], [0, 2, -1, 0, -1], [-1, -1, 8, -2, 0], [0, 0, -2, 3, 0], [-1, -1, 0, 0, 3]]]]], ['o9_11845', [8, 7, 2, 2, 2, 2], [[130, [[2, -1, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 4, -1, -1], [0, 0, 0, -1, 6, -3], [-1, 0, 0, -1, -3, 5]]], [131, [[2, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, -1, 0], [-1, 0, 0, 0, 3, -1, -1], [0, 0, 0, -1, -1, 3, -1], [0, 0, 0, 0, -1, -1, 5]]]]], ['o9_11999', [13, 7, 5, 2, 2], [[252, [[2, 0, -1, 0, -1], [0, 6, -1, -1, -2], [-1, -1, 7, -3, 0], [0, -1, -3, 4, 0], [-1, -2, 0, 0, 3]]], [253, [[2, 0, -1, 0, -1, 0], [0, 2, 0, -1, 0, -1], [-1, 0, 6, -1, 0, -2], [0, -1, -1, 3, 0, 0], [-1, 0, 0, 0, 4, 0], [0, -1, -2, 0, 0, 3]]]]], ['o9_12144', [10, 9, 3, 3, 3], [[210, [[2, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [0, 0, -1, 5, 0, -3], [0, 0, 0, 0, 4, -3], [-1, -1, 0, -3, -3, 8]]], [211, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 2, -1, 0, 0], [0, -1, 0, -1, 5, 0, -2], [0, 0, 0, 0, 0, 4, -3], [0, 0, -1, 0, -2, -3, 6]]]]], ['o9_12230', [11, 9, 3, 3, 3], [[231, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [-1, 0, -1, 4, 0, -1], [0, 0, 0, 0, 4, -3], [-1, -1, 0, -1, -3, 8]]], [232, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 2, -1, 0, 0], [-1, 0, 0, -1, 4, 0, -1], [0, 0, 0, 0, 0, 4, -3], [0, 0, -1, 0, -1, -3, 6]]]]], ['o9_12412', [10, 7, 3, 2], [[163, [[7, 0, -2, -3], [0, 3, -1, -1], [-2, -1, 5, -2], [-3, -1, -2, 6]]], [164, [[2, -1, -1, 0, 0], [-1, 7, 0, -1, -3], [-1, 0, 3, 0, -1], [0, -1, 0, 3, -2], [0, -3, -1, -2, 6]]]]], ['o9_12459', [8, 7, 4, 4], [[148, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, -1], [0, 0, -1, 6, -1, -3], [0, -1, 0, -1, 4, -1], [0, 0, -1, -3, -1, 5]]], [149, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, -1, 0], [0, 0, -1, 0, 3, -1, -1], [0, 0, 0, -1, -1, 5, -1], [0, 0, 0, 0, -1, -1, 3]]]]], ['o9_12519', [5, 5, 5, 5, 4, 3, 2], [[130, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 5, -2, -1, -1], [0, 0, 0, -2, 3, 0, -1], [0, 0, 0, -1, 0, 3, 0], [0, 0, -1, -1, -1, 0, 3]]], [131, [[2, 0, 0, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 0, 4, -1, -2, 0], [0, 0, 0, 0, -1, 3, 0, -1], [-1, 0, 0, 0, -2, 0, 3, 0], [-1, 0, 0, -1, 0, -1, 0, 3]]]]], ['o9_12693', [5, 5, 5, 4, 4], [[110, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [-1, 0, -1, 0, 0, 7, -5], [0, 0, 0, 0, -1, -5, 6]]], [111, [[2, -1, 0, 0, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, 0, 0], [0, 0, 0, 2, 0, 0, -1, 0], [0, 0, 0, 0, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, 0, 0, -1, 0, 0, 5, -4], [-1, 0, 0, 0, 0, -1, -4, 6]]]]], ['o9_12736', [9, 8, 4, 4], [[180, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, -1, 0, -1], [0, 0, -1, 6, 0, -4], [0, 0, 0, 0, 3, -2], [0, -1, -1, -4, -2, 8]]], [181, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, -1, 0, 0], [0, 0, 0, 2, -1, 0, -1], [0, 0, -1, -1, 6, 0, -3], [0, 0, 0, 0, 0, 3, -2], [0, 0, 0, -1, -3, -2, 6]]]]], ['o9_12757', [5, 5, 5, 5, 5, 3, 3], [[145, [[2, 0, 0, 0, 0, 0, -1, -1], [0, 2, 0, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [-1, -1, 0, 0, 0, 0, 6, -2], [-1, 0, 0, 0, 0, -1, -2, 4]]], [146, [[2, -1, 0, 0, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, 0, 0, -1], [0, 0, 2, 0, 0, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 0, 0, 4, -2], [0, -1, 0, 0, 0, 0, -1, -2, 4]]]]], ['o9_12873', [14, 5, 5, 3, 2], [[260, [[2, -1, 0, 0, -1], [-1, 7, -1, -1, -1], [0, -1, 6, -2, -1], [0, -1, -2, 3, 0], [-1, -1, -1, 0, 3]]], [261, [[2, 0, -1, 0, -1, 0], [0, 2, -1, 0, 0, -1], [-1, -1, 7, -1, 0, -1], [0, 0, -1, 3, 0, -1], [-1, 0, 0, 0, 3, 0], [0, -1, -1, -1, 0, 3]]]]], ['o9_12892', [11, 4, 4, 3, 2, 2], [[171, [[2, 0, 0, 0, -1, 0], [0, 2, 0, -1, 0, -1], [0, 0, 4, 0, 0, -1], [0, -1, 0, 3, -2, 0], [-1, 0, 0, -2, 5, -1], [0, -1, -1, 0, -1, 3]]], [172, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 4, 0, 0, -1], [-1, 0, -1, 0, 3, -1, 0], [0, -1, 0, 0, -1, 3, -1], [0, 0, -1, -1, 0, -1, 3]]]]], ['o9_12919', [11, 5, 4, 2], [[167, [[6, -2, 0, -1], [-2, 6, -3, -1], [0, -3, 5, -1], [-1, -1, -1, 3]]], [168, [[2, -1, 0, 0, -1], [-1, 8, 0, -3, -1], [0, 0, 3, -1, -1], [0, -3, -1, 4, 0], [-1, -1, -1, 0, 3]]]]], ['o9_12971', [6, 6, 6, 5, 3, 3], [[153, [[2, 0, 0, 0, 0, -1, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 4, -2, 0], [-1, -1, 0, 0, -2, 6, -1], [-1, 0, 0, -1, 0, -1, 3]]], [154, [[2, -1, 0, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1, -1, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [0, -1, -1, 0, 0, 4, -1, 0], [0, 0, -1, 0, 0, -1, 4, -1], [-1, 0, 0, 0, -1, 0, -1, 3]]]]], ['o9_13052', [8, 8, 5, 4], [[172, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, -1, 0], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 3, 0, 0], [0, -1, 0, 0, 7, -4], [0, 0, -1, 0, -4, 5]]], [173, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 2, 0, 0, -1], [-1, 0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 5, -2], [0, 0, -1, -1, 0, -2, 4]]]]], ['o9_13056', [11, 8, 4, 4], [[220, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, -1, 0, -1], [-1, 0, -1, 4, 0, -1], [0, 0, 0, 0, 3, -2], [0, -1, -1, -1, -2, 8]]], [221, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, 0], [0, 0, 0, 2, -1, 0, -1], [-1, 0, 0, -1, 4, 0, -1], [0, 0, 0, 0, 0, 3, -2], [0, 0, 0, -1, -1, -2, 6]]]]], ['o9_13125', [10, 7, 4, 3], [[176, [[2, 0, -1, -1, 0], [0, 6, -3, -1, -1], [-1, -3, 7, 0, -2], [-1, -1, 0, 3, 0], [0, -1, -2, 0, 3]]], [177, [[2, -1, -1, 0, 0, 0], [-1, 2, 0, 0, -1, 0], [-1, 0, 4, 0, -1, -1], [0, 0, 0, 3, 0, -2], [0, -1, -1, 0, 3, 0], [0, 0, -1, -2, 0, 5]]]]], ['o9_13182', [6, 6, 6, 5, 2, 2, 2], [[146, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 4, -1, 0], [-1, 0, 0, 0, -1, 5, -2], [0, 0, 0, -1, 0, -2, 3]]], [147, [[2, 0, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, -1, 0], [0, -1, 2, 0, 0, -1, 0, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, -1, 0, 0, 4, 0, 0], [0, -1, 0, 0, 0, 0, 3, -1], [-1, 0, 0, 0, -1, 0, -1, 3]]]]], ['o9_13188', [6, 6, 6, 6, 4, 3], [[171, [[2, 0, 0, 0, -1, -1, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 3, 0, 0], [-1, 0, 0, 0, 0, 6, -3], [0, 0, 0, -1, 0, -3, 4]]], [172, [[2, -1, 0, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 0, 4, -2], [0, -1, 0, 0, -1, 0, -2, 4]]]]], ['o9_13400', [8, 8, 7, 2, 2, 2], [[190, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 2, 0, 0, -1], [0, 0, 0, 5, -1, 0], [-1, 0, 0, -1, 5, -2], [0, 0, -1, 0, -2, 3]]], [191, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, -1], [0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, 0, 0, 5, 0, 0], [0, 0, -1, 0, 0, 3, -1], [-1, -1, 0, -1, 0, -1, 4]]]]], ['o9_13403', [11, 7, 4, 2], [[191, [[7, -1, -2, -2], [-1, 5, -2, -1], [-2, -2, 5, -1], [-2, -1, -1, 4]]], [192, [[2, -1, 0, 0, -1], [-1, 8, -1, -2, -2], [0, -1, 4, -1, -1], [0, -2, -1, 3, 0], [-1, -2, -1, 0, 4]]]]], ['o9_13433', [12, 5, 5, 3, 2], [[208, [[2, 0, -1, 0, -1], [0, 6, -2, -1, -1], [-1, -2, 6, -1, -1], [0, -1, -1, 3, 0], [-1, -1, -1, 0, 3]]], [209, [[2, 0, -1, 0, -1, 0], [0, 2, 0, -1, 0, -1], [-1, 0, 5, 0, -1, -1], [0, -1, 0, 3, 0, -1], [-1, 0, -1, 0, 3, 0], [0, -1, -1, -1, 0, 4]]]]], ['o9_13508', [13, 6, 4, 3], [[232, [[2, 0, -1, -1, 0], [0, 7, -1, -2, -1], [-1, -1, 6, 0, -3], [-1, -2, 0, 3, 0], [0, -1, -3, 0, 4]]], [233, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0], [0, 0, 7, -1, -2, -1], [0, 0, -1, 4, 0, -2], [0, -1, -2, 0, 3, 0], [-1, 0, -1, -2, 0, 4]]]]], ['o9_13537', [11, 6, 5, 2, 2, 2], [[195, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 3, 0, 0, -1], [0, 0, 0, 3, -2, -1], [-1, 0, 0, -2, 5, -1], [0, 0, -1, -1, -1, 4]]], [196, [[2, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, -1, 0], [0, -1, 2, 0, 0, 0, 0], [0, 0, 0, 3, 0, 0, -1], [-1, 0, 0, 0, 3, -1, -1], [0, -1, 0, 0, -1, 3, -1], [0, 0, 0, -1, -1, -1, 4]]]]], ['o9_13604', [6, 6, 6, 6, 5, 2, 2], [[178, [[2, 0, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, 0, 0, 0, 4, -1, 0], [-1, 0, 0, 0, -1, 5, -2], [0, 0, 0, -1, 0, -2, 3]]], [179, [[2, 0, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, 0, -1, -1], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 0, 4, 0, 0], [0, -1, 0, 0, 0, 0, 3, -1], [-1, -1, 0, 0, -1, 0, -1, 4]]]]], ['o9_13639', [8, 8, 6, 3, 2], [[178, [[2, 0, 0, 0, -1], [0, 4, -1, -3, 0], [0, -1, 5, 0, -3], [0, -3, 0, 5, -1], [-1, 0, -3, -1, 5]]], [179, [[2, 0, -1, 0, -1, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 4, 0, 0, 0], [0, 0, 0, 3, 0, -1], [-1, 0, 0, 0, 3, -1], [0, -1, 0, -1, -1, 3]]]]], ['o9_13649', [11, 4, 4, 2], [[158, [[2, -1, 0, -1], [-1, 7, -2, -1], [0, -2, 5, -2], [-1, -1, -2, 5]]], [159, [[2, 0, -1, 0, 0], [0, 2, -1, 0, -1], [-1, -1, 7, -1, -1], [0, 0, -1, 3, -2], [0, -1, -1, -2, 5]]]]], ['o9_13666', [11, 7, 3, 3], [[190, [[2, 0, 0, -1, -1], [0, 2, -1, -1, 0], [0, -1, 6, 0, -3], [-1, -1, 0, 6, 0], [-1, 0, -3, 0, 4]]], [191, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, 0, -1, 0], [0, 0, 0, 8, -3, -3], [0, 0, -1, -3, 4, 0], [0, -1, 0, -3, 0, 4]]]]], ['o9_13720', [10, 10, 4, 4, 3], [[243, [[2, 0, 0, -1, -1, 0], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, 0], [-1, 0, 0, 0, 6, -3], [0, 0, -1, 0, -3, 5]]], [244, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, -1, 0, 3, 0, 0], [0, 0, 0, 0, 0, 4, -2], [0, -1, 0, -1, 0, -2, 5]]]]], ['o9_13952', [13, 5, 5, 2, 2], [[228, [[2, 0, -1, -1, 0], [0, 2, -1, 0, -1], [-1, -1, 7, 0, -2], [-1, 0, 0, 5, -1], [0, -1, -2, -1, 4]]], [229, [[2, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, -1], [0, 0, -1, 8, -2, -2], [0, -1, 0, -2, 3, 0], [-1, 0, -1, -2, 0, 4]]]]], ['o9_14018', [13, 7, 6, 3, 3], [[274, [[2, 0, 0, -1, -1, 0], [0, 2, 0, 0, -1, -1], [0, 0, 3, 0, -1, 0], [-1, 0, 0, 3, 0, -1], [-1, -1, -1, 0, 7, -3], [0, -1, 0, -1, -3, 5]]], [275, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1, 0], [0, 0, 0, 3, 0, 0, -1], [-1, 0, 0, 0, 3, -1, -1], [0, 0, -1, 0, -1, 4, 0], [0, -1, 0, -1, -1, 0, 4]]]]], ['o9_14079', [13, 4, 4, 4, 2, 2], [[226, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, 0, -1, 0], [-1, 0, 0, 6, 0, -2], [0, 0, -1, 0, 3, -1], [-1, -1, 0, -2, -1, 6]]], [227, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, 0, -1], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 2, 0, -1, 0], [-1, -1, 0, 0, 6, 0, -1], [0, 0, 0, -1, 0, 3, -1], [0, -1, -1, 0, -1, -1, 4]]]]], ['o9_14136', [9, 5, 4, 4], [[141, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, -1, 0, -1], [0, 0, -1, 3, 0, 0], [0, 0, 0, 0, 6, -1], [0, -1, -1, 0, -1, 3]]], [142, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 2, -1, 0, -1], [0, 0, 0, -1, 3, 0, 0], [-1, 0, 0, 0, 0, 6, -1], [0, 0, -1, -1, 0, -1, 3]]]]], ['o9_14364', [7, 7, 6, 2, 2], [[143, [[2, 0, 0, -1, -1], [0, 2, 0, 0, -1], [0, 0, 7, -4, -2], [-1, 0, -4, 6, 0], [-1, -1, -2, 0, 4]]], [144, [[2, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, 0], [0, 0, 2, 0, 0, -1], [0, 0, 0, 5, -1, 0], [0, -1, 0, -1, 3, -1], [-1, 0, -1, 0, -1, 3]]]]], ['o9_14376', [10, 10, 6, 3, 3], [[256, [[2, 0, 0, -1, 0, 0], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 7, -2, -3], [0, 0, 0, -2, 3, -1], [0, 0, -1, -3, -1, 6]]], [257, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [0, 0, -1, 0, 5, -2, -2], [0, 0, 0, 0, -2, 3, -1], [-1, 0, 0, -1, -2, -1, 6]]]]], ['o9_14495', [10, 7, 3, 3, 2, 2], [[176, [[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, -1], [0, -1, 3, 0, 0, 0], [0, 0, 0, 4, -2, -2], [-1, 0, 0, -2, 5, -1], [0, -1, 0, -2, -1, 4]]], [177, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 3, 0, 0, 0], [-1, 0, 0, 0, 4, -1, -2], [0, -1, 0, 0, -1, 3, -1], [0, 0, -1, 0, -2, -1, 4]]]]], ['o9_14599', [13, 6, 6, 2, 2, 2], [[254, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, -1, -1], [0, -1, 0, 5, 0, -2], [0, 0, -1, 0, 4, -2], [-1, 0, -1, -2, -2, 7]]], [255, [[2, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0, -1], [0, -1, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, -1, -1], [-1, 0, -1, 0, 5, 0, -1], [0, 0, 0, -1, 0, 4, -2], [0, -1, 0, -1, -1, -2, 5]]]]], ['o9_14716', [7, 7, 7, 6, 2, 2, 2], [[196, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 7, -3, -2], [0, 0, 0, 0, -3, 4, 0], [-1, 0, 0, -1, -2, 0, 4]]], [197, [[2, 0, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0, -1, 0], [0, -1, 2, 0, 0, -1, 0, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [0, 0, -1, 0, 0, 5, -1, 0], [0, -1, 0, 0, 0, -1, 3, -1], [-1, 0, 0, 0, -1, 0, -1, 3]]]]], ['o9_14831', [8, 3, 2], [[79, [[2, 0, 0, -1], [0, 6, -1, -1], [0, -1, 3, 0], [-1, -1, 0, 3]]], [80, [[2, -1, 0, -1, 0], [-1, 2, 0, 0, -1], [0, 0, 6, -1, -1], [-1, 0, -1, 3, 0], [0, -1, -1, 0, 3]]]]], ['o9_14974', [11, 8, 3, 2, 2], [[203, [[2, -1, -1, 0, 0], [-1, 7, 0, 0, -4], [-1, 0, 3, -1, -1], [0, 0, -1, 4, 0], [0, -4, -1, 0, 5]]], [204, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, -1, 0], [0, 0, 8, 0, -2, -4], [-1, -1, 0, 3, 0, 0], [0, -1, -2, 0, 3, 0], [-1, 0, -4, 0, 0, 5]]]]], ['o9_15506', [11, 7, 4, 3, 2, 2], [[204, [[2, 0, -1, 0, -1, 0], [0, 3, 0, 0, 0, -1], [-1, 0, 4, 0, -1, -2], [0, 0, 0, 4, -1, -1], [-1, 0, -1, -1, 3, 0], [0, -1, -2, -1, 0, 4]]], [205, [[2, 0, 0, -1, 0, 0, 0], [0, 2, 0, -1, -1, 0, 0], [0, 0, 3, 0, 0, -1, 0], [-1, -1, 0, 4, 0, 0, -2], [0, -1, 0, 0, 3, -1, 0], [0, 0, -1, 0, -1, 3, -1], [0, 0, 0, -2, 0, -1, 3]]]]], ['o9_15633', [12, 7, 4, 3, 2], [[223, [[6, 0, -1, -1, -2], [0, 3, 0, -1, 0], [-1, 0, 3, -1, -1], [-1, -1, -1, 4, 0], [-2, 0, -1, 0, 3]]], [224, [[2, 0, 0, -1, -1, 0], [0, 6, -1, -1, 0, -2], [0, -1, 3, 0, -1, 0], [-1, -1, 0, 3, 0, -1], [-1, 0, -1, 0, 3, 0], [0, -2, 0, -1, 0, 3]]]]], ['o9_15997', [13, 9, 4, 3, 2], [[280, [[7, -1, -1, 0, -3], [-1, 5, -2, -1, -1], [-1, -2, 3, 0, 0], [0, -1, 0, 3, 0], [-3, -1, 0, 0, 4]]], [281, [[2, -1, 0, 0, -1, 0], [-1, 7, 0, -1, 0, -3], [0, 0, 4, -1, -2, 0], [0, -1, -1, 3, 0, -1], [-1, 0, -2, 0, 3, 0], [0, -3, 0, -1, 0, 4]]]]], ['o9_16065', [14, 9, 5, 4, 2, 2], [[327, [[2, 0, -1, 0, 0, 0], [0, 3, 0, 0, -1, 0], [-1, 0, 7, -1, -1, -2], [0, 0, -1, 3, -1, -1], [0, -1, -1, -1, 3, 0], [0, 0, -2, -1, 0, 3]]], [328, [[2, 0, 0, 0, 0, -1, 0], [0, 2, 0, -1, -1, 0, 0], [0, 0, 3, 0, 0, -1, 0], [0, -1, 0, 5, -1, -1, -2], [0, -1, 0, -1, 3, 0, 0], [-1, 0, -1, -1, 0, 4, -1], [0, 0, 0, -2, 0, -1, 3]]]]], ['o9_16141', [11, 11, 5, 5, 2, 2], [[301, [[2, 0, 0, 0, -1, 0], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, 0], [-1, 0, 0, -1, 5, -2], [0, 0, -1, 0, -2, 4]]], [302, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1, -1], [0, 0, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, -1, 0, 4, 0, 0], [0, -1, 0, 0, 0, 3, -1], [-1, -1, 0, -1, 0, -1, 5]]]]], ['o9_16157', [9, 9, 9, 5, 3, 2], [[282, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 6, -1, -2, -1], [0, 0, -1, 3, 0, -2], [0, 0, -2, 0, 3, -1], [0, -1, -1, -2, -1, 6]]], [283, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 4, 0, -2, -1], [-1, 0, 0, 0, 3, 0, 0], [0, 0, 0, -2, 0, 3, -1], [-1, 0, -1, -1, 0, -1, 5]]]]], ['o9_16181', [13, 8, 5, 3, 3], [[278, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, -1], [0, 0, 3, 0, -1, 0], [-1, 0, 0, 7, -2, -2], [0, -1, -1, -2, 4, 0], [0, -1, 0, -2, 0, 3]]], [279, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, -1, -1], [0, 0, 0, 3, 0, -1, 0], [0, 0, 0, 0, 5, -1, -2], [-1, 0, -1, -1, -1, 4, 0], [0, 0, -1, 0, -2, 0, 3]]]]], ['o9_16319', [9, 9, 9, 4, 4, 2, 2], [[284, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 6, -1, -2], [0, -1, 0, 0, -1, 3, 0], [-1, 0, 0, -1, -2, 0, 5]]], [285, [[2, 0, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1, 0, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [0, -1, -1, 0, 0, 4, -1, 0], [0, -1, 0, 0, 0, -1, 3, -1], [-1, 0, 0, 0, -1, 0, -1, 4]]]]], ['o9_16356', [8, 8, 8, 3, 3, 3], [[221, [[2, 0, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [-1, 0, -1, 0, 0, 6, -2], [-1, 0, 0, 0, -1, -2, 5]]], [222, [[2, -1, 0, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 0, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, 0, 0, -1, 0, 0, 4, -2], [0, -1, 0, 0, 0, -1, -2, 5]]]]], ['o9_16527', [8, 8, 8, 5, 2, 2], [[226, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 4, -1, -3], [-1, 0, 0, -1, 5, 0], [-1, 0, -1, -3, 0, 6]]], [227, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 4, 0, -3], [0, -1, 0, 0, 0, 3, -2], [0, 0, 0, -1, -3, -2, 7]]]]], ['o9_16642', [11, 11, 6, 4, 2, 2], [[303, [[2, 0, 0, 0, -1, -1], [0, 2, 0, 0, 0, -1], [0, 0, 7, -2, -2, -2], [0, 0, -2, 3, 0, 0], [-1, 0, -2, 0, 3, 0], [-1, -1, -2, 0, 0, 5]]], [304, [[2, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, 0, 0, 0, -1], [0, 0, 0, 5, -1, -2, 0], [0, -1, 0, -1, 3, 0, -1], [0, -1, 0, -2, 0, 3, 0], [-1, 0, -1, 0, -1, 0, 4]]]]], ['o9_16748', [7, 7, 7, 5, 3, 2], [[186, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 6, -1, -2, -1], [0, 0, -1, 3, 0, -1], [0, 0, -2, 0, 3, 0], [0, -1, -1, -1, 0, 3]]], [187, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 4, 0, -2, -1], [-1, 0, 0, 0, 3, 0, -1], [0, 0, 0, -2, 0, 3, 0], [-1, 0, -1, -1, -1, 0, 4]]]]], ['o9_16920', [8, 5, 3, 3, 2], [[112, [[2, -1, 0, 0, -1], [-1, 3, 0, 0, 0], [0, 0, 5, -3, -1], [0, 0, -3, 5, -1], [-1, 0, -1, -1, 3]]], [113, [[2, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, -1], [0, -1, 3, 0, 0, 0], [-1, 0, 0, 5, -2, -1], [0, 0, 0, -2, 3, -1], [0, -1, 0, -1, -1, 3]]]]], ['o9_17450', [11, 6, 4, 2], [[178, [[6, 0, -2, -2], [0, 5, -3, -1], [-2, -3, 6, 0], [-2, -1, 0, 3]]], [179, [[2, -1, 0, 0, 0], [-1, 6, 0, -1, -2], [0, 0, 5, -3, -1], [0, -1, -3, 4, 0], [0, -2, -1, 0, 3]]]]], ['o9_18007', [7, 7, 6, 4, 3], [[161, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1], [0, 0, 5, -2, -1, -1], [-1, 0, -2, 3, 0, 0], [0, 0, -1, 0, 4, 0], [-1, -1, -1, 0, 0, 3]]], [162, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, -1, 0], [0, 0, 2, 0, 0, 0, -1], [0, 0, 0, 5, -2, -2, 0], [0, 0, 0, -2, 4, 0, -1], [0, -1, 0, -2, 0, 3, 0], [-1, 0, -1, 0, -1, 0, 3]]]]], ['o9_18209', [7, 7, 7, 4, 4], [[182, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [-1, 0, -1, 0, 0, 7, -2], [0, -1, 0, 0, -1, -2, 4]]], [183, [[2, -1, 0, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, 0, -1], [0, 0, 0, 2, 0, 0, -1, 0], [0, 0, 0, 0, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, 0, 0, -1, 0, 0, 5, -2], [0, 0, -1, 0, 0, -1, -2, 4]]]]], ['o9_18633', [11, 5, 5, 2, 2, 2], [[184, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, -1, -1], [0, -1, 0, 5, -1, -1], [0, 0, -1, -1, 5, -1], [-1, 0, -1, -1, -1, 4]]], [185, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, -1], [0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, 0, 0, 4, -1, 0], [0, 0, -1, 0, -1, 3, 0], [-1, -1, 0, -1, 0, 0, 4]]]]], ['o9_18813', [9, 6, 4, 2], [[138, [[4, 0, -1, -2], [0, 3, -1, -2], [-1, -1, 5, -1], [-2, -2, -1, 6]]], [139, [[2, -1, 0, 0, 0], [-1, 4, 0, -1, -1], [0, 0, 3, -1, -2], [0, -1, -1, 5, -1], [0, -1, -2, -1, 4]]]]], ['o9_19130', [7, 6, 5, 2, 2], [[119, [[2, 0, 0, 0, -1], [0, 5, 0, -3, -1], [0, 0, 3, 0, -1], [0, -3, 0, 4, -1], [-1, -1, -1, -1, 4]]], [120, [[2, 0, 0, 0, -1, 0], [0, 2, 0, -1, 0, -1], [0, 0, 5, -1, -3, -1], [0, -1, -1, 3, 0, 0], [-1, 0, -3, 0, 4, 0], [0, -1, -1, 0, 0, 3]]]]], ['o9_20219', [10, 8, 3, 3, 2], [[187, [[2, -1, 0, -1, 0], [-1, 5, -2, 0, -1], [0, -2, 7, -1, -3], [-1, 0, -1, 3, 0], [0, -1, -3, 0, 4]]], [188, [[2, 0, -1, 0, -1, 0], [0, 2, -1, 0, -1, 0], [-1, -1, 4, 0, 0, -1], [0, 0, 0, 4, 0, -3], [-1, -1, 0, 0, 3, 0], [0, 0, -1, -3, 0, 5]]]]], ['o9_21893', [7, 4, 4, 3], [[92, [[2, 0, 0, -1, -1], [0, 2, 0, 0, -1], [0, 0, 6, -4, -1], [-1, 0, -4, 6, 0], [-1, -1, -1, 0, 3]]], [93, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 4, -1, -1], [0, 0, 0, -1, 4, 0], [0, -1, -1, -1, 0, 3]]]]], ['o9_21918', [5, 5, 5, 3, 3, 2], [[98, [[2, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 3, -1, -1], [0, 0, 0, -1, 5, -3], [0, 0, -1, -1, -3, 5]]], [99, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 3, 0, -1], [0, 0, 0, 0, 0, 3, -1], [-1, 0, 0, -1, -1, -1, 4]]]]], ['o9_22129', [10, 3, 3], [[121, [[2, -1, 0, 0, 0], [-1, 2, 0, -1, 0], [0, 0, 2, -1, -1], [0, -1, -1, 7, 0], [0, 0, -1, 0, 4]]], [122, [[2, -1, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, 0], [0, 0, 0, 2, -1, -1], [0, 0, -1, -1, 7, 0], [-1, 0, 0, -1, 0, 4]]]]], ['o9_22477', [8, 3, 3, 3, 2], [[96, [[2, -1, 0, 0, -1], [-1, 2, 0, 0, 0], [0, 0, 6, -3, -1], [0, 0, -3, 5, -1], [-1, 0, -1, -1, 3]]], [97, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, 0, 0, 0], [-1, 0, 0, 5, -1, -1], [0, 0, 0, -1, 3, 0], [-1, -1, 0, -1, 0, 3]]]]], ['o9_22607', [9, 5], [[110, [[2, -1, 0, -1, 0], [-1, 2, -1, 0, 0], [0, -1, 2, 0, -1], [-1, 0, 0, 6, -3], [0, 0, -1, -3, 8]]], [111, [[2, -1, 0, 0, -1, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 2, 0, 0], [-1, 0, 0, 0, 6, -3], [0, 0, 0, 0, -3, 6]]]]], ['o9_22663', [9, 5, 5, 2, 2], [[140, [[2, 0, -1, -1, 0], [0, 2, 0, 0, -1], [-1, 0, 5, -2, -1], [-1, 0, -2, 5, -1], [0, -1, -1, -1, 4]]], [141, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, 0], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 4, -1, -1], [0, -1, 0, -1, 3, 0], [-1, 0, -1, -1, 0, 4]]]]], ['o9_22698', [9, 9, 4, 2, 2], [[187, [[2, 0, 0, -1, -1], [0, 2, 0, 0, -1], [0, 0, 3, -1, -1], [-1, 0, -1, 5, -2], [-1, -1, -1, -2, 7]]], [188, [[2, 0, 0, 0, 0, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, -1], [0, -1, 0, -1, 3, -1], [-1, 0, -1, -1, -1, 6]]]]], ['o9_22925', [6, 6, 5, 4, 2, 2], [[122, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1], [0, 0, 4, -1, -2, 0], [-1, 0, -1, 5, -1, -2], [0, 0, -2, -1, 3, 0], [0, -1, 0, -2, 0, 3]]], [123, [[2, 0, 0, -1, 0, 0, -1], [0, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, 0, 0, -1], [-1, 0, 0, 4, 0, -2, 0], [0, -1, 0, 0, 3, -1, -1], [0, 0, 0, -2, -1, 3, 0], [-1, 0, -1, 0, -1, 0, 3]]]]], ['o9_23023', [9, 9, 5, 4, 3, 2], [[217, [[2, 0, 0, 0, 0, -1], [0, 3, 0, -1, -1, -1], [0, 0, 3, -2, -1, 0], [0, -1, -2, 6, -1, 0], [0, -1, -1, -1, 3, 0], [-1, -1, 0, 0, 0, 3]]], [218, [[2, 0, 0, -1, 0, -1, 0], [0, 2, 0, 0, 0, 0, -1], [0, 0, 3, 0, -1, -1, -1], [-1, 0, 0, 3, 0, 0, 0], [0, 0, -1, 0, 3, -1, 0], [-1, 0, -1, 0, -1, 3, 0], [0, -1, -1, 0, 0, 0, 3]]]]], ['o9_23263', [11, 4, 4, 3, 3], [[173, [[2, 0, 0, 0, 0, -1], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, -1, -1], [0, -1, 0, 4, 0, 0], [0, 0, -1, 0, 5, 0], [-1, -1, -1, 0, 0, 3]]], [174, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 2, 0, -1, -1], [0, 0, -1, 0, 4, 0, 0], [-1, 0, 0, -1, 0, 5, 0], [0, -1, -1, -1, 0, 0, 3]]]]], ['o9_23660', [11, 7, 4], [[189, [[2, -1, 0, -1, 0], [-1, 2, -1, 0, 0], [0, -1, 7, -2, -2], [-1, 0, -2, 7, -3], [0, 0, -2, -3, 5]]], [190, [[2, -1, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 7, -2, -2], [0, 0, 0, -2, 5, -2], [-1, 0, 0, -2, -2, 5]]]]], ['o9_23955', [7, 7, 7, 4], [[166, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [-1, 0, 0, 0, 7, -3], [0, -1, 0, -1, -3, 6]]], [167, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, 0, 0, 0, 0, 5, -3], [0, 0, -1, 0, -1, -3, 6]]]]], ['o9_23961', [10, 7, 3, 3, 3], [[178, [[2, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [0, 0, -1, 3, 0, 0], [0, 0, 0, 0, 6, -2], [-1, -1, 0, 0, -2, 4]]], [179, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 3, 0, 0], [-1, 0, 0, 0, 0, 6, -2], [0, -1, -1, 0, 0, -2, 4]]]]], ['o9_23977', [9, 8, 3, 3, 3], [[174, [[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [0, 0, -1, 5, -1, -2], [-1, 0, 0, -1, 5, -2], [0, -1, 0, -2, -2, 5]]], [175, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, -1, 0], [0, -1, 0, 0, 3, -1, -1], [0, 0, 0, -1, -1, 4, -1], [0, 0, 0, 0, -1, -1, 4]]]]], ['o9_24149', [7, 7, 7, 3, 3, 3], [[176, [[2, 0, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [-1, 0, -1, 0, 0, 6, -4], [0, 0, 0, 0, -1, -4, 6]]], [177, [[2, -1, 0, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0, 0, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 0, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, 0, 0, -1, 0, 0, 4, -3], [-1, 0, 0, 0, 0, -1, -3, 6]]]]], ['o9_24183', [14, 8, 5, 3, 2], [[299, [[6, 0, -1, -1, -2], [0, 6, -1, -2, 0], [-1, -1, 3, 0, -1], [-1, -2, 0, 3, 0], [-2, 0, -1, 0, 3]]], [300, [[2, 0, 0, -1, 0, 0], [0, 7, 0, -1, -2, -2], [0, 0, 3, 0, -2, 0], [-1, -1, 0, 3, 0, -1], [0, -2, -2, 0, 4, 0], [0, -2, 0, -1, 0, 3]]]]], ['o9_24534', [9, 4, 4, 4], [[132, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, -1, 0, -1], [0, 0, -1, 2, 0, 0], [0, 0, 0, 0, 7, -5], [0, -1, -1, 0, -5, 7]]], [133, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, -1], [0, 0, 0, -1, 2, 0, 0], [0, 0, -1, 0, 0, 7, -4], [0, 0, 0, -1, 0, -4, 5]]]]], ['o9_24592', [8, 5, 2], [[95, [[2, 0, 0, -1], [0, 7, -2, -3], [0, -2, 3, -1], [-1, -3, -1, 6]]], [96, [[2, -1, 0, 0, 0], [-1, 2, 0, -1, 0], [0, 0, 6, -1, -3], [0, -1, -1, 3, -1], [0, 0, -3, -1, 5]]]]], ['o9_24886', [14, 6, 6, 3, 3], [[288, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, -1, -1], [-1, -1, 0, 5, 0, -1], [0, 0, -1, 0, 3, -1], [-1, -1, -1, -1, -1, 7]]], [289, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 2, 0, -1, -1], [-1, 0, -1, 0, 5, 0, -1], [0, 0, 0, -1, 0, 3, -1], [0, 0, -1, -1, -1, -1, 5]]]]], ['o9_24889', [9, 9, 7, 3, 3], [[231, [[2, 0, 0, -1, -1, 0], [0, 2, 0, 0, -1, 0], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 4, 0, 0], [-1, -1, 0, 0, 6, -3], [0, 0, -1, 0, -3, 4]]], [232, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1, -1], [0, 0, 0, 2, 0, 0, -1], [-1, 0, 0, 0, 4, 0, 0], [0, 0, -1, 0, 0, 4, -1], [0, -1, -1, -1, 0, -1, 4]]]]], ['o9_25595', [10, 3, 3, 3, 3], [[138, [[2, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [0, 0, -1, 2, 0, 0], [0, 0, 0, 0, 7, -4], [-1, -1, 0, 0, -4, 6]]], [139, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, -1], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, 0], [0, -1, 0, 0, 0, 7, -3], [0, 0, -1, 0, 0, -3, 4]]]]], ['o9_26604', [9, 6, 4, 2, 2], [[142, [[2, 0, -1, 0, 0], [0, 4, 0, -1, -2], [-1, 0, 3, 0, -2], [0, -1, 0, 3, -1], [0, -2, -2, -1, 6]]], [143, [[2, 0, -1, 0, 0, 0], [0, 2, 0, -1, 0, 0], [-1, 0, 4, 0, -1, -1], [0, -1, 0, 3, 0, -2], [0, 0, -1, 0, 3, -1], [0, 0, -1, -2, -1, 4]]]]], ['o9_26791', [11, 6, 3, 2], [[171, [[7, 0, -3, -2], [0, 3, -2, -1], [-3, -2, 6, 0], [-2, -1, 0, 4]]], [172, [[2, -1, 0, -1, 0], [-1, 6, -1, 0, -2], [0, -1, 3, 0, 0], [-1, 0, 0, 3, -2], [0, -2, 0, -2, 5]]]]], ['o9_27155', [11, 5, 3, 2], [[160, [[7, 0, -3, -1], [0, 3, -1, 0], [-3, -1, 5, -1], [-1, 0, -1, 3]]], [161, [[2, 0, 0, -1, 0], [0, 8, -2, -2, -1], [0, -2, 3, 0, -1], [-1, -2, 0, 3, 0], [0, -1, -1, 0, 3]]]]], ['o9_27261', [8, 8, 7, 3, 3, 2], [[200, [[2, 0, -1, -1, 0, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 6, -1, -2, -1], [-1, 0, -1, 3, 0, -1], [0, 0, -2, 0, 4, 0], [0, -1, -1, -1, 0, 3]]], [201, [[2, 0, 0, 0, 0, -1, -1], [0, 2, 0, -1, 0, -1, 0], [0, 0, 2, 0, 0, 0, -1], [0, -1, 0, 5, -1, -1, 0], [0, 0, 0, -1, 3, 0, -1], [-1, -1, 0, -1, 0, 3, 0], [-1, 0, -1, 0, -1, 0, 3]]]]], ['o9_27392', [7, 7, 7, 6, 3, 3], [[203, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, 0, -1], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 7, -2, -3], [0, 0, 0, 0, -2, 3, 0], [0, -1, 0, -1, -3, 0, 5]]], [204, [[2, -1, 0, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, -1, -1, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [0, 0, -1, 0, 0, 5, -2, 0], [0, 0, -1, 0, 0, -2, 4, -1], [-1, 0, 0, 0, -1, 0, -1, 3]]]]], ['o9_27480', [11, 4, 4], [[156, [[2, -1, 0, -1, 0], [-1, 2, 0, 0, -1], [0, 0, 2, -1, -1], [-1, 0, -1, 7, -2], [0, -1, -1, -2, 7]]], [157, [[2, -1, 0, 0, -1, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, 0], [0, 0, 0, 2, -1, -1], [-1, 0, 0, -1, 7, -2], [0, 0, 0, -1, -2, 5]]]]], ['o9_27737', [10, 7, 3], [[161, [[2, -1, -1, 0, 0], [-1, 2, 0, 0, -1], [-1, 0, 7, 0, -4], [0, 0, 0, 4, -3], [0, -1, -4, -3, 8]]], [162, [[2, -1, 0, -1, 0, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, 0], [-1, 0, 0, 7, 0, -4], [0, 0, -1, 0, 4, -2], [0, 0, 0, -4, -2, 6]]]]], ['o9_28113', [6, 6, 6, 6, 5, 3, 2], [[183, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 6, -1, -2, -3], [0, 0, 0, -1, 3, 0, 0], [0, 0, 0, -2, 0, 3, 0], [0, 0, -1, -3, 0, 0, 4]]], [184, [[2, 0, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 0, 4, 0, -2, 0], [-1, 0, 0, 0, 0, 3, 0, -2], [0, 0, 0, 0, -2, 0, 3, -1], [0, 0, 0, -1, 0, -2, -1, 4]]]]], ['o9_28153', [9, 9, 5, 2, 2], [[196, [[2, 0, 0, -1, -1], [0, 2, 0, 0, -1], [0, 0, 4, -1, -2], [-1, 0, -1, 5, -2], [-1, -1, -2, -2, 7]]], [197, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, 0], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 4, 0, -2], [0, -1, 0, 0, 3, -1], [-1, 0, -1, -2, -1, 6]]]]], ['o9_28529', [13, 7, 4, 3], [[245, [[2, -1, 0, -1, 0], [-1, 6, -1, 0, -2], [0, -1, 7, -2, -1], [-1, 0, -2, 3, 0], [0, -2, -1, 0, 3]]], [246, [[2, -1, -1, 0, 0, 0], [-1, 2, 0, 0, -1, 0], [-1, 0, 6, -1, 0, -2], [0, 0, -1, 4, 0, -1], [0, -1, 0, 0, 3, 0], [0, 0, -2, -1, 0, 3]]]]], ['o9_28592', [8, 8, 7, 4, 3], [[204, [[2, 0, -1, -1, 0, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 7, 0, -2, -4], [-1, 0, 0, 3, 0, 0], [0, 0, -2, 0, 3, 0], [0, -1, -4, 0, 0, 5]]], [205, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, 0, -1], [0, 0, 0, 5, 0, -3, 0], [-1, 0, 0, 0, 3, 0, -2], [0, 0, 0, -3, 0, 4, -1], [0, 0, -1, 0, -2, -1, 4]]]]], ['o9_28746', [11, 5, 5, 3, 3], [[191, [[2, 0, 0, 0, -1, 0], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, -1, -1], [0, -1, 0, 6, -1, -2], [-1, 0, -1, -1, 4, 0], [0, -1, -1, -2, 0, 4]]], [192, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1, -1], [0, 0, 0, 2, 0, 0, -1], [0, -1, 0, 0, 4, -1, 0], [0, 0, -1, 0, -1, 4, -1], [-1, 0, -1, -1, 0, -1, 4]]]]], ['o9_28810', [9, 9, 4, 4, 3, 2], [[208, [[2, 0, -1, 0, -1, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 5, -2, 0, -1], [0, 0, -2, 3, 0, -1], [-1, 0, 0, 0, 3, 0], [0, -1, -1, -1, 0, 4]]], [209, [[2, 0, 0, 0, 0, -1, -1], [0, 2, 0, -1, 0, 0, 0], [0, 0, 2, 0, 0, 0, -1], [0, -1, 0, 4, -1, -2, 0], [0, 0, 0, -1, 3, 0, -1], [-1, 0, 0, -2, 0, 3, 0], [-1, 0, -1, 0, -1, 0, 4]]]]], ['o9_29246', [8, 8, 8, 6, 3, 3], [[248, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, 0, -1], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 7, -2, -1], [0, 0, 0, 0, -2, 3, 0], [-1, -1, 0, -1, -1, 0, 4]]], [249, [[2, -1, 0, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1, 0, -1], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [0, 0, -1, 0, 0, 5, -2, -1], [0, 0, 0, 0, 0, -2, 3, 0], [0, -1, -1, 0, -1, -1, 0, 4]]]]], ['o9_29436', [9, 9, 8, 3, 3, 2], [[249, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1], [0, 0, 7, -1, -3, -3], [-1, 0, -1, 3, 0, 0], [0, 0, -3, 0, 4, 0], [0, -1, -3, 0, 0, 4]]], [250, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, 0, -1], [0, 0, 2, 0, 0, 0, -1], [0, 0, 0, 5, 0, -2, 0], [-1, -1, 0, 0, 3, 0, -1], [0, 0, 0, -2, 0, 3, -1], [0, -1, -1, 0, -1, -1, 4]]]]], ['o9_29529', [8, 7, 5, 3, 2], [[152, [[5, 0, 0, -2, -2], [0, 3, -1, 0, -1], [0, -1, 3, 0, -1], [-2, 0, 0, 3, -1], [-2, -1, -1, -1, 5]]], [153, [[2, -1, -1, 0, 0, 0], [-1, 5, 0, -1, -2, -1], [-1, 0, 3, 0, 0, -1], [0, -1, 0, 3, -1, 0], [0, -2, 0, -1, 3, 0], [0, -1, -1, 0, 0, 3]]]]], ['o9_30375', [11, 6, 5, 3, 3], [[202, [[2, 0, 0, -1, -1, 0], [0, 2, 0, 0, -1, 0], [0, 0, 3, 0, 0, -1], [-1, 0, 0, 3, -1, -1], [-1, -1, 0, -1, 6, -1], [0, 0, -1, -1, -1, 3]]], [203, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, -1, 0], [0, 0, 0, 3, 0, 0, -1], [-1, 0, 0, 0, 3, -1, -1], [0, 0, -1, 0, -1, 4, -1], [0, 0, 0, -1, -1, -1, 3]]]]], ['o9_30721', [7, 7, 4, 4, 2], [[135, [[2, 0, -1, 0, 0], [0, 2, 0, 0, -1], [-1, 0, 5, -2, -1], [0, 0, -2, 5, -2], [0, -1, -1, -2, 4]]], [136, [[2, 0, 0, 0, 0, -1], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, -1], [0, 0, 0, -1, 3, -2], [-1, 0, -1, -1, -2, 5]]]]], ['o9_30790', [13, 6, 6, 3, 3], [[261, [[2, 0, 0, 0, 0, -1], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, -1, -1], [0, -1, 0, 6, 0, -3], [0, 0, -1, 0, 3, -1], [-1, -1, -1, -3, -1, 7]]], [262, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 2, 0, -1, -1], [0, -1, -1, 0, 6, 0, -2], [0, 0, 0, -1, 0, 3, -1], [0, 0, -1, -1, -2, -1, 5]]]]], ['o9_31165', [11, 7, 4, 3, 3], [[206, [[2, 0, 0, -1, -1, 0], [0, 2, 0, 0, -1, -1], [0, 0, 3, 0, -1, 0], [-1, 0, 0, 7, 0, -2], [-1, -1, -1, 0, 3, 0], [0, -1, 0, -2, 0, 3]]], [207, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1, 0], [0, 0, 0, 3, 0, 0, -1], [0, 0, 0, 0, 5, -3, -2], [0, 0, -1, 0, -3, 4, 0], [0, -1, 0, -1, -2, 0, 4]]]]], ['o9_32132', [7, 5, 3], [[85, [[2, -1, -1, 0], [-1, 4, -1, -1], [-1, -1, 6, -2], [0, -1, -2, 4]]]]], ['o9_32257', [7, 6, 3], [[96, [[2, 0, 0, -1], [0, 5, -1, -3], [0, -1, 5, -3], [-1, -3, -3, 7]]], [97, [[2, -1, 0, 0, 0], [-1, 2, -1, 0, 0], [0, -1, 5, -1, -2], [0, 0, -1, 5, -3], [0, 0, -2, -3, 5]]]]], ['o9_32588', [5, 5, 4, 3, 2, 2], [[84, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1], [0, 0, 3, -1, -1, -1], [-1, 0, -1, 3, 0, -1], [0, 0, -1, 0, 3, 0], [0, -1, -1, -1, 0, 3]]]]], ['o9_33526', [7, 4, 4, 2, 2], [[90, [[2, 0, 0, -1, 0], [0, 2, 0, 0, -1], [0, 0, 4, -2, -1], [-1, 0, -2, 5, -1], [0, -1, -1, -1, 3]]], [91, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, 0], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 4, -1, -1], [0, -1, 0, -1, 3, -1], [0, 0, -1, -1, -1, 3]]]]], ['o9_33585', [8, 6, 3, 3, 2], [[123, [[2, -1, 0, 0, -1], [-1, 5, 0, -3, 0], [0, 0, 3, 0, -2], [0, -3, 0, 5, -1], [-1, 0, -2, -1, 4]]], [124, [[2, 0, -1, 0, 0, -1], [0, 2, -1, 0, 0, -1], [-1, -1, 4, 0, -1, 0], [0, 0, 0, 3, 0, -2], [0, 0, -1, 0, 3, 0], [-1, -1, 0, -2, 0, 4]]]]], ['o9_34403', [8, 6, 3], [[111, [[2, -1, 0, -1], [-1, 4, -1, -1], [0, -1, 5, -3], [-1, -1, -3, 7]]], [112, [[2, -1, -1, 0, 0], [-1, 2, 0, 0, 0], [-1, 0, 4, -1, -1], [0, 0, -1, 5, -3], [0, 0, -1, -3, 5]]]]], ['o9_35320', [6, 6, 5, 4, 2], [[118, [[2, 0, 0, 0, -1], [0, 3, -1, -1, 0], [0, -1, 5, -3, 0], [0, -1, -3, 6, -2], [-1, 0, 0, -2, 3]]], [119, [[2, 0, -1, 0, 0, -1], [0, 2, 0, 0, 0, -1], [-1, 0, 3, 0, -1, 0], [0, 0, 0, 4, -1, -3], [0, 0, -1, -1, 3, 0], [-1, -1, 0, -3, 0, 5]]]]], ['o9_35549', [11, 11, 5, 5, 3, 2], [[306, [[2, 0, -1, 0, -1, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 6, -1, -1, -3], [0, 0, -1, 3, 0, 0], [-1, 0, -1, 0, 3, 0], [0, -1, -3, 0, 0, 5]]], [307, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, -1, 0, 0, 0], [0, 0, 2, 0, 0, 0, -1], [0, -1, 0, 4, 0, -2, 0], [-1, 0, 0, 0, 3, 0, -2], [0, 0, 0, -2, 0, 3, -1], [0, 0, -1, 0, -2, -1, 5]]]]], ['o9_35682', [6, 6, 5, 3], [[108, [[2, 0, 0, -1, -1], [0, 2, 0, 0, -1], [0, 0, 4, -2, 0], [-1, 0, -2, 6, -1], [-1, -1, 0, -1, 3]]], [109, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, 0], [0, 0, 0, -1, 4, -1], [-1, 0, -1, 0, -1, 3]]]]], ['o9_35736', [11, 11, 6, 3, 3], [[298, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 7, -2, -1], [0, 0, 0, -2, 3, -1], [-1, 0, -1, -1, -1, 5]]], [299, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [0, 0, -1, 0, 5, -2, -1], [0, 0, 0, 0, -2, 3, -1], [0, -1, 0, -1, -1, -1, 5]]]]], ['o9_35772', [6, 6, 4, 3, 3], [[108, [[2, 0, 0, -1, -1, 0], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, 0], [-1, -1, 0, 0, 6, -3], [0, 0, -1, 0, -3, 4]]], [109, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, -1, -1, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, -1, 0, 3, 0, 0], [0, 0, -1, 0, 0, 4, -2], [0, -1, 0, -1, 0, -2, 4]]]]], ['o9_37754', [6, 6, 4, 3, 2], [[102, [[2, 0, 0, 0, -1], [0, 3, 0, -1, -1], [0, 0, 3, -1, -1], [0, -1, -1, 4, 0], [-1, -1, -1, 0, 3]]]]], ['o9_37941', [6, 6, 5, 3, 3, 2], [[120, [[2, 0, -1, 0, -1, 0], [0, 2, 0, 0, 0, -1], [-1, 0, 3, -1, 0, 0], [0, 0, -1, 5, -1, -3], [-1, 0, 0, -1, 3, 0], [0, -1, 0, -3, 0, 4]]], [121, [[2, 0, 0, 0, 0, -1, -1], [0, 2, 0, -1, 0, -1, 0], [0, 0, 2, 0, 0, 0, -1], [0, -1, 0, 4, -2, 0, 0], [0, 0, 0, -2, 3, 0, -1], [-1, -1, 0, 0, 0, 3, 0], [-1, 0, -1, 0, -1, 0, 3]]]]], ['o9_39394', [8, 7, 4, 2, 2], [[138, [[2, -1, 0, 0, -1], [-1, 5, 0, -2, -1], [0, 0, 5, -1, -2], [0, -2, -1, 3, 0], [-1, -1, -2, 0, 4]]], [139, [[2, 0, -1, 0, 0, 0], [0, 2, 0, -1, 0, 0], [-1, 0, 3, -1, 0, -1], [0, -1, -1, 4, -2, 0], [0, 0, 0, -2, 3, -1], [0, 0, -1, 0, -1, 4]]]]], ['o9_39451', [7, 6, 3, 2, 2], [[103, [[2, 0, -1, 0, 0], [0, 3, -1, -1, -1], [-1, -1, 3, -1, 0], [0, -1, -1, 4, -1], [0, -1, 0, -1, 4]]]]], ['o9_40179', [8, 7, 3, 2, 2], [[131, [[2, -1, 0, -1, 0], [-1, 4, 0, 0, -2], [0, 0, 4, 0, -3], [-1, 0, 0, 3, -1], [0, -2, -3, -1, 6]]]]], ['o9_43001', [8, 5, 4, 2, 2], [[114, [[2, 0, -1, 0, 0], [0, 4, -1, -1, -1], [-1, -1, 4, 0, -1], [0, -1, 0, 3, -1], [0, -1, -1, -1, 3]]]]], ['o9_43679', [7, 7, 5, 3, 3], [[143, [[2, 0, 0, 0, -1, -1], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, -1], [-1, 0, 0, -1, 4, 0], [-1, -1, -1, -1, 0, 4]]]]], ['o9_43953', [9, 4, 3, 3], [[117, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 5, -2, 0], [0, 0, -2, 5, -1], [-1, -1, 0, -1, 3]]]]], ['o9_44054', [9, 5, 3, 3], [[126, [[2, 0, 0, -1, 0], [0, 2, 0, 0, -1], [0, 0, 6, -2, -2], [-1, 0, -2, 4, -1], [0, -1, -2, -1, 4]]]]], ['s042', [5, 5, 2], [[56, [[2, 0, 0, -1], [0, 2, 0, -1], [0, 0, 3, -1], [-1, -1, -1, 6]]], [57, [[2, -1, 0, 0, -1], [-1, 2, 0, -1, 0], [0, 0, 2, 0, -1], [0, -1, 0, 3, -1], [-1, 0, -1, -1, 6]]]]], ['s068', [5, 5, 3, 2, 2], [[68, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 3, -1, 0], [0, 0, -1, 4, 0], [-1, -1, 0, 0, 3]]], [69, [[2, 0, 0, -1, 0, 0], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, 0], [0, -1, 0, 0, 3, -2], [0, 0, -1, 0, -2, 4]]]]], ['s086', [3, 3, 3, 3, 2, 2], [[45, [[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [-1, 0, 0, 0, 5, -3], [0, 0, 0, -1, -3, 4]]], [46, [[2, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 0, 3, -2], [-1, 0, 0, 0, -1, -2, 4]]]]], ['s104', [7, 3, 2, 2], [[67, [[2, 0, -1, -1], [0, 6, -2, -1], [-1, -2, 5, -1], [-1, -1, -1, 3]]], [68, [[2, 0, -1, 0, -1], [0, 2, 0, -1, -1], [-1, 0, 6, -1, -1], [0, -1, -1, 3, 0], [-1, -1, -1, 0, 3]]]]], ['s114', [7, 4, 3, 2], [[79, [[3, 0, 0, -1], [0, 3, -2, -1], [0, -2, 5, -2], [-1, -1, -2, 5]]], [80, [[2, 0, -1, 0, 0], [0, 3, 0, 0, -1], [-1, 0, 3, -1, -1], [0, 0, -1, 3, -2], [0, -1, -1, -2, 5]]]]], ['s294', [5, 4, 2], [[46, [[4, -1, -2], [-1, 5, -3], [-2, -3, 6]]], [47, [[2, -1, 0, 0], [-1, 4, -1, -1], [0, -1, 5, -3], [0, -1, -3, 4]]]]], ['s301', [5, 5, 3], [[61, [[2, 0, -1, -1], [0, 2, 0, -1], [-1, 0, 6, -3], [-1, -1, -3, 6]]], [62, [[2, -1, 0, 0, 0], [-1, 2, 0, 0, -1], [0, 0, 2, 0, -1], [0, 0, 0, 4, -3], [0, -1, -1, -3, 6]]]]], ['s308', [5, 5, 2, 2, 2], [[63, [[2, -1, 0, 0, 0], [-1, 2, 0, -1, 0], [0, 0, 2, 0, -1], [0, -1, 0, 5, -3], [0, 0, -1, -3, 5]]], [64, [[2, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [0, 0, -1, 0, 3, -2], [-1, 0, 0, -1, -2, 5]]]]], ['s336', [4, 4, 3, 2, 2], [[50, [[2, 0, -1, -1, 0], [0, 2, 0, 0, -1], [-1, 0, 3, -1, 0], [-1, 0, -1, 5, -2], [0, -1, 0, -2, 3]]], [51, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, 0], [0, -1, 0, 0, 3, -1], [-1, 0, -1, 0, -1, 3]]]]], ['s344', [6, 4, 3], [[63, [[2, -1, 0, -1], [-1, 4, -2, 0], [0, -2, 7, -2], [-1, 0, -2, 3]]], [64, [[2, -1, -1, 0, 0], [-1, 2, 0, 0, 0], [-1, 0, 4, -2, -1], [0, 0, -2, 4, -2], [0, 0, -1, -2, 5]]]]], ['s346', [7, 3, 3, 2], [[72, [[2, 0, -1, -1], [0, 5, -2, -1], [-1, -2, 6, -1], [-1, -1, -1, 3]]], [73, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 5, -2, 0], [0, 0, -2, 3, 0], [-1, -1, 0, 0, 3]]]]], ['s367', [4, 4, 4, 3, 2], [[62, [[2, -1, 0, 0, 0], [-1, 2, 0, 0, -1], [0, 0, 3, -1, 0], [0, 0, -1, 5, -2], [0, -1, 0, -2, 3]]], [63, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 3, 0, 0], [0, 0, 0, 0, 3, -2], [-1, 0, -1, 0, -2, 4]]]]], ['s369', [6, 5, 2, 2], [[70, [[2, -1, -1, 0], [-1, 4, -1, -1], [-1, -1, 7, -3], [0, -1, -3, 4]]], [71, [[2, 0, -1, 0, 0], [0, 2, -1, -1, 0], [-1, -1, 4, -1, -1], [0, -1, -1, 3, -1], [0, 0, -1, -1, 5]]]]], ['s407', [7, 4, 2, 2], [[74, [[2, 0, -1, 0], [0, 6, -2, -2], [-1, -2, 5, -1], [0, -2, -1, 3]]], [75, [[2, 0, -1, 0, 0], [0, 2, 0, -1, 0], [-1, 0, 6, -1, -2], [0, -1, -1, 3, -1], [0, 0, -2, -1, 3]]]]], ['s582', [4, 4, 3, 3], [[52, [[2, 0, 0, -1, 0], [0, 2, 0, -1, 0], [0, 0, 2, 0, -1], [-1, -1, 0, 6, -4], [0, 0, -1, -4, 5]]], [53, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0], [0, 0, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [0, 0, -1, 0, 4, -3], [-1, 0, 0, -1, -3, 5]]]]], ['s665', [5, 5, 4, 2, 2], [[75, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 6, -2, -2], [0, 0, -2, 3, 0], [-1, -1, -2, 0, 4]]], [76, [[2, 0, 0, 0, 0, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, 0], [0, -1, 0, -1, 3, -1], [-1, 0, -1, 0, -1, 3]]]]], ['s684', [5, 4, 3, 2], [[55, [[4, 0, -2, -1], [0, 3, 0, -1], [-2, 0, 3, -1], [-1, -1, -1, 4]]], [56, [[2, 0, 0, -1, 0], [0, 4, -1, -2, -1], [0, -1, 3, 0, -1], [-1, -2, 0, 3, 0], [0, -1, -1, 0, 3]]]]], ['s769', [6, 5, 3, 2], [[75, [[4, 0, -2, -1], [0, 6, -1, -2], [-2, -1, 3, 0], [-1, -2, 0, 3]]], [76, [[2, 0, 0, -1, 0], [0, 5, 0, -2, -2], [0, 0, 3, 0, -2], [-1, -2, 0, 3, 0], [0, -2, -2, 0, 4]]]]], ['s800', [5, 5, 3, 3], [[70, [[2, 0, 0, -1, -1], [0, 2, 0, -1, 0], [0, 0, 2, 0, -1], [-1, -1, 0, 6, -2], [-1, 0, -1, -2, 4]]], [71, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [0, 0, -1, 0, 4, -2], [0, -1, 0, -1, -2, 4]]]]], ['t00110', [5, 5, 5, 5, 2], [[106, [[2, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [0, 0, 0, 0, 3, -1], [-1, 0, 0, -1, -1, 6]]], [107, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 0, 3, -1], [-1, 0, 0, 0, -1, -1, 6]]]]], ['t00146', [5, 5, 5, 5, 3, 2, 2], [[118, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 3, -1, 0], [0, 0, 0, 0, -1, 4, 0], [-1, 0, 0, -1, 0, 0, 3]]], [119, [[2, 0, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 0, 3, 0, 0], [0, -1, 0, 0, 0, 0, 3, -2], [0, 0, 0, 0, -1, 0, -2, 4]]]]], ['t00324', [3, 3, 3, 3, 3, 3, 2, 2], [[63, [[2, 0, 0, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [-1, 0, 0, 0, 0, 0, 5, -3], [0, 0, 0, 0, 0, -1, -3, 4]]], [64, [[2, 0, 0, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 0, 0, 0, 3, -2], [-1, 0, 0, 0, 0, 0, -1, -2, 4]]]]], ['t00423', [7, 7, 7, 3, 2, 2], [[165, [[2, 0, 0, -1, -1, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 3, -1, -1], [-1, 0, 0, -1, 5, -2], [0, 0, -1, -1, -2, 6]]], [166, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 3, 0, -1], [0, -1, 0, 0, 0, 3, -1], [-1, 0, 0, -1, -1, -1, 6]]]]], ['t00434', [7, 7, 7, 4, 3, 2], [[177, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 5, -2, -1, -1], [0, 0, -2, 5, -2, 0], [0, 0, -1, -2, 3, 0], [0, -1, -1, 0, 0, 3]]], [178, [[2, 0, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 4, -1, -1, -1], [0, 0, 0, -1, 3, -2, 0], [-1, 0, 0, -1, -2, 4, 0], [0, 0, -1, -1, 0, 0, 3]]]]], ['t00729', [7, 7, 2, 2], [[108, [[2, 0, 0, 0, -1], [0, 2, 0, -1, -1], [0, 0, 2, 0, -1], [0, -1, 0, 3, 0], [-1, -1, -1, 0, 7]]], [109, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0], [0, 0, 2, 0, -1, -1], [0, 0, 0, 2, 0, -1], [0, -1, -1, 0, 3, 0], [-1, 0, -1, -1, 0, 7]]]]], ['t00787', [7, 7, 5, 2, 2, 2], [[136, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -2, 0], [0, 0, 0, -2, 5, 0], [-1, 0, -1, 0, 0, 3]]], [137, [[2, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, -1, 0], [0, -1, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, -1, 0, 4, 0, 0], [0, -1, 0, 0, 0, 3, -2], [0, 0, 0, -1, 0, -2, 4]]]]], ['t00826', [8, 8, 3, 3, 2, 2], [[155, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, 0], [0, -1, 0, 0, 4, 0], [-1, 0, -1, 0, 0, 4]]], [156, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [-1, -1, -1, 0, 3, 0, 0], [0, -1, 0, 0, 0, 3, -2], [0, 0, 0, -1, 0, -2, 5]]]]], ['t00855', [8, 8, 5, 3], [[164, [[2, 0, 0, -1, -1], [0, 2, 0, 0, -1], [0, 0, 4, -2, -2], [-1, 0, -2, 6, -2], [-1, -1, -2, -2, 7]]], [165, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, -2], [0, 0, 0, -1, 4, -2], [-1, 0, -1, -2, -2, 7]]]]], ['t00873', [8, 8, 3, 2, 2], [[146, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 3, -1, 0], [0, 0, -1, 4, -3], [-1, -1, 0, -3, 8]]], [147, [[2, 0, 0, -1, 0, 0], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, -1], [0, -1, 0, 0, 3, -2], [0, 0, -1, -1, -2, 7]]]]], ['t00932', [8, 8, 5, 3, 3], [[173, [[2, 0, 0, 0, -1, 0], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, 0], [-1, 0, 0, -1, 4, 0], [0, -1, -1, 0, 0, 3]]], [174, [[2, -1, 0, 0, 0, -1, 0], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 2, 0, 0, -1], [0, -1, -1, 0, 4, -1, 0], [-1, 0, 0, 0, -1, 4, 0], [0, 0, -1, -1, 0, 0, 3]]]]], ['t01033', [5, 5, 5, 5, 3], [[111, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [-1, 0, 0, 0, 6, -3], [-1, 0, 0, -1, -3, 6]]], [112, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, 0, 0, 0, 0, 4, -3], [0, -1, 0, 0, -1, -3, 6]]]]], ['t01037', [5, 5, 5, 5, 2, 2, 2], [[113, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 0, 5, -3], [0, 0, 0, 0, -1, -3, 5]]], [114, [[2, 0, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 0, 3, -2], [-1, 0, 0, 0, 0, -1, -2, 5]]]]], ['t01125', [10, 3, 3, 2, 2], [[127, [[2, 0, 0, -1, -1], [0, 2, -1, 0, -1], [0, -1, 7, -2, 0], [-1, 0, -2, 5, -1], [-1, -1, 0, -1, 3]]], [128, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, -1], [0, 0, 2, -1, 0, -1], [-1, 0, -1, 7, -1, 0], [0, -1, 0, -1, 3, 0], [-1, -1, -1, 0, 0, 3]]]]], ['t01216', [10, 4, 3, 3], [[136, [[2, 0, 0, -1, -1], [0, 2, 0, -1, -1], [0, 0, 7, -3, -1], [-1, -1, -3, 6, 0], [-1, -1, -1, 0, 3]]], [137, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, 0, -1, -1], [-1, 0, 0, 7, -2, -1], [0, 0, -1, -2, 4, 0], [0, -1, -1, -1, 0, 3]]]]], ['t01268', [10, 7, 3, 3, 2], [[172, [[2, -1, 0, 0, -1], [-1, 3, 0, 0, 0], [0, 0, 4, -2, -2], [0, 0, -2, 5, -2], [-1, 0, -2, -2, 6]]], [173, [[2, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, -1], [0, -1, 3, 0, 0, 0], [-1, 0, 0, 4, -1, -2], [0, 0, 0, -1, 3, -2], [0, -1, 0, -2, -2, 6]]]]], ['t01292', [10, 6, 4, 3], [[163, [[2, 0, 0, -1, 0], [0, 3, 0, 0, -1], [0, 0, 4, -3, -1], [-1, 0, -3, 6, -2], [0, -1, -1, -2, 5]]], [164, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, -1, 0, 0], [0, 0, 3, 0, 0, -1], [0, -1, 0, 4, -2, -1], [0, 0, 0, -2, 4, -2], [0, 0, -1, -1, -2, 5]]]]], ['t01318', [9, 4, 3, 2, 2], [[115, [[2, 0, -1, 0, 0], [0, 6, -1, -1, -1], [-1, -1, 3, -1, 0], [0, -1, -1, 4, -2], [0, -1, 0, -2, 3]]], [116, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, -1, 0], [0, -1, 4, 0, 0, 0], [0, 0, 0, 3, -1, -1], [-1, -1, 0, -1, 3, 0], [-1, 0, 0, -1, 0, 3]]]]], ['t01368', [9, 5, 4, 2], [[127, [[3, 0, -1, 0], [0, 3, -1, -1], [-1, -1, 6, -2], [0, -1, -2, 4]]], [128, [[2, 0, -1, 0, -1], [0, 3, 0, 0, -1], [-1, 0, 3, -1, -1], [0, 0, -1, 3, -1], [-1, -1, -1, -1, 6]]]]], ['t01409', [9, 9, 4, 3, 2], [[192, [[2, 0, 0, 0, -1], [0, 5, -2, -1, -1], [0, -2, 3, 0, -1], [0, -1, 0, 3, -2], [-1, -1, -1, -2, 7]]], [193, [[2, 0, 0, 0, -1, -1], [0, 2, 0, 0, 0, -1], [0, 0, 4, -1, -2, -1], [0, 0, -1, 3, 0, -1], [-1, 0, -2, 0, 3, 0], [-1, -1, -1, -1, 0, 6]]]]], ['t01422', [4, 4, 4, 4, 3, 2, 2], [[82, [[2, 0, 0, 0, -1, -1, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 3, -1, 0], [-1, 0, 0, 0, -1, 5, -2], [0, 0, 0, -1, 0, -2, 3]]], [83, [[2, 0, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 0, 3, 0, 0], [0, -1, 0, 0, 0, 0, 3, -1], [-1, 0, 0, 0, -1, 0, -1, 3]]]]], ['t01424', [9, 9, 5, 4, 2, 2], [[212, [[2, 0, 0, -1, -1, 0], [0, 2, 0, 0, 0, -1], [0, 0, 4, -1, -1, -1], [-1, 0, -1, 5, -2, 0], [-1, 0, -1, -2, 4, 0], [0, -1, -1, 0, 0, 3]]], [213, [[2, 0, 0, -1, 0, -1, 0], [0, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, 0, 0, -1], [-1, 0, 0, 4, 0, -1, -1], [0, -1, 0, 0, 3, -1, 0], [-1, 0, 0, -1, -1, 3, 0], [0, 0, -1, -1, 0, 0, 3]]]]], ['t01440', [4, 4, 4, 4, 4, 3, 2], [[94, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, 0, 0, 0, 3, -1, 0], [0, 0, 0, 0, -1, 5, -2], [0, 0, 0, -1, 0, -2, 3]]], [95, [[2, 0, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 0, 3, -2], [-1, 0, 0, 0, -1, 0, -2, 4]]]]], ['t01598', [11, 5, 4, 2, 2], [[171, [[2, 0, -1, 0, 0], [0, 6, -2, 0, -1], [-1, -2, 6, -2, -1], [0, 0, -2, 3, -1], [0, -1, -1, -1, 3]]], [172, [[2, 0, -1, 0, 0, -1], [0, 2, 0, -1, 0, 0], [-1, 0, 6, -1, 0, -1], [0, -1, -1, 4, -2, 0], [0, 0, 0, -2, 3, -1], [-1, 0, -1, 0, -1, 3]]]]], ['t01636', [11, 4, 4, 3, 2], [[167, [[2, 0, -1, 0, -1], [0, 4, 0, 0, -1], [-1, 0, 3, -2, 0], [0, 0, -2, 5, -2], [-1, -1, 0, -2, 5]]], [168, [[2, 0, 0, -1, 0, 0], [0, 2, 0, -1, 0, -1], [0, 0, 4, 0, 0, -1], [-1, -1, 0, 3, -1, 0], [0, 0, 0, -1, 3, -2], [0, -1, -1, 0, -2, 5]]]]], ['t01646', [11, 6, 5, 2, 2], [[191, [[2, 0, 0, -1, -1], [0, 3, 0, 0, -1], [0, 0, 3, -2, -1], [-1, 0, -2, 5, -1], [-1, -1, -1, -1, 6]]], [192, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, -1], [0, 0, 3, 0, 0, -1], [-1, 0, 0, 3, -1, -1], [0, -1, 0, -1, 3, -1], [0, -1, -1, -1, -1, 6]]]]], ['t01690', [11, 7, 4, 2, 2], [[195, [[2, 0, 0, -1, -1], [0, 7, -1, -2, -2], [0, -1, 3, -1, 0], [-1, -2, -1, 5, -1], [-1, -2, 0, -1, 4]]], [196, [[2, 0, -1, 0, 0, -1], [0, 2, 0, 0, -1, -1], [-1, 0, 7, -1, -1, -2], [0, 0, -1, 3, -1, 0], [0, -1, -1, -1, 3, 0], [-1, -1, -2, 0, 0, 4]]]]], ['t01757', [7, 7, 2, 2, 2, 2], [[115, [[2, -1, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [0, 0, -1, 0, 5, -3], [0, 0, 0, -1, -3, 6]]], [116, [[2, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, -1, 0], [0, 0, 0, 0, 2, 0, -1], [0, 0, 0, -1, 0, 3, -2], [-1, 0, 0, 0, -1, -2, 6]]]]], ['t01834', [7, 7, 5, 2], [[129, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 7, -2, -4], [0, 0, -2, 3, 0], [-1, -1, -4, 0, 7]]], [130, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1], [0, 0, 0, 5, -1, -4], [-1, 0, 0, -1, 3, 0], [0, -1, -1, -4, 0, 7]]]]], ['t01850', [8, 5, 4], [[108, [[2, -1, -1, 0, 0], [-1, 2, 0, 0, -1], [-1, 0, 4, -2, 0], [0, 0, -2, 8, -2], [0, -1, 0, -2, 3]]], [109, [[2, -1, 0, -1, 0, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, 0], [-1, 0, 0, 4, -2, -1], [0, 0, 0, -2, 5, -3], [0, 0, 0, -1, -3, 6]]]]], ['t01863', [10, 3, 3, 3, 2], [[132, [[2, -1, 0, 0, -1], [-1, 2, 0, -1, 0], [0, 0, 6, -2, -1], [0, -1, -2, 6, -1], [-1, 0, -1, -1, 3]]], [133, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, 0, 0, 0], [-1, 0, 0, 6, -2, 0], [0, 0, 0, -2, 3, 0], [-1, -1, 0, 0, 0, 3]]]]], ['t01949', [8, 7, 2, 2, 2], [[126, [[2, -1, 0, -1, 0], [-1, 2, -1, 0, 0], [0, -1, 4, -1, -1], [-1, 0, -1, 8, -4], [0, 0, -1, -4, 5]]], [127, [[2, 0, 0, -1, 0, 0], [0, 2, -1, 0, -1, 0], [0, -1, 2, -1, 0, 0], [-1, 0, -1, 4, -1, -1], [0, -1, 0, -1, 3, -1], [0, 0, 0, -1, -1, 6]]]]], ['t02099', [5, 5, 5, 4, 2], [[96, [[2, -1, 0, 0, 0], [-1, 2, 0, 0, -1], [0, 0, 6, -3, -2], [0, 0, -3, 5, -1], [0, -1, -2, -1, 4]]], [97, [[2, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 4, -1, 0], [0, 0, 0, -1, 3, -1], [-1, 0, -1, 0, -1, 3]]]]], ['t02104', [9, 4, 4, 2], [[118, [[2, 0, -1, -1], [0, 5, -1, -2], [-1, -1, 5, -2], [-1, -2, -2, 6]]], [119, [[2, 0, -1, 0, 0], [0, 2, 0, -1, -1], [-1, 0, 5, -1, -1], [0, -1, -1, 5, -2], [0, -1, -1, -2, 4]]]]], ['t02238', [8, 8, 3, 3], [[148, [[2, 0, 0, -1, -1], [0, 2, 0, -1, -1], [0, 0, 2, 0, -1], [-1, -1, 0, 6, -2], [-1, -1, -1, -2, 7]]], [149, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, 0, -1, -1], [0, 0, 0, 2, 0, -1], [0, 0, -1, 0, 4, -2], [0, -1, -1, -1, -2, 7]]]]], ['t02378', [11, 4, 4, 2, 2], [[162, [[2, 0, 0, -1, 0], [0, 2, -1, 0, -1], [0, -1, 7, -2, -1], [-1, 0, -2, 5, -1], [0, -1, -1, -1, 3]]], [163, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, -1], [-1, 0, -1, 7, -1, -1], [0, -1, 0, -1, 3, -1], [0, 0, -1, -1, -1, 3]]]]], ['t02398', [8, 8, 5, 3, 2, 2], [[171, [[2, 0, 0, -1, -1, 0], [0, 2, 0, 0, 0, -1], [0, 0, 4, -1, -2, -1], [-1, 0, -1, 5, 0, 0], [-1, 0, -2, 0, 3, 0], [0, -1, -1, 0, 0, 3]]], [172, [[2, 0, 0, -1, 0, 0, 0], [0, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, 0, 0, -1], [-1, 0, 0, 4, 0, -2, -1], [0, -1, 0, 0, 3, -2, 0], [0, 0, 0, -2, -2, 4, 0], [0, 0, -1, -1, 0, 0, 3]]]]], ['t02404', [9, 5, 3, 2, 2], [[124, [[2, 0, 0, -1, -1], [0, 6, -1, -1, -2], [0, -1, 4, -1, 0], [-1, -1, -1, 3, 0], [-1, -2, 0, 0, 3]]], [125, [[2, 0, -1, 0, -1, 0], [0, 2, 0, 0, -1, -1], [-1, 0, 4, -1, 0, 0], [0, 0, -1, 4, 0, -2], [-1, -1, 0, 0, 3, 0], [0, -1, 0, -2, 0, 3]]]]], ['t02470', [10, 7, 3, 2, 2], [[167, [[2, 0, -1, -1, 0], [0, 7, 0, -2, -3], [-1, 0, 3, -1, 0], [-1, -2, -1, 5, -1], [0, -3, 0, -1, 4]]], [168, [[2, 0, -1, -1, 0, 0], [0, 2, 0, -1, -1, 0], [-1, 0, 7, 0, -1, -3], [-1, -1, 0, 3, 0, 0], [0, -1, -1, 0, 3, -1], [0, 0, -3, 0, -1, 4]]]]], ['t02537', [7, 7, 7, 3, 3, 2], [[170, [[2, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 3, -1, 0], [0, 0, 0, -1, 5, -2], [0, 0, -1, 0, -2, 4]]], [171, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 3, -2], [-1, 0, 0, -1, 0, -2, 5]]]]], ['t02567', [7, 7, 7, 4, 2, 2], [[172, [[2, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 6, -2, -2], [0, 0, 0, -2, 3, -1], [0, 0, -1, -2, -1, 5]]], [173, [[2, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 4, -2, -1], [0, 0, 0, 0, -2, 3, -1], [-1, 0, 0, -1, -1, -1, 5]]]]], ['t02639', [11, 7, 4, 3, 2], [[200, [[3, 0, 0, -1, 0], [0, 4, -1, -1, -2], [0, -1, 5, -2, 0], [-1, -1, -2, 5, -1], [0, -2, 0, -1, 3]]], [201, [[2, 0, -1, 0, 0, 0], [0, 3, 0, 0, -1, 0], [-1, 0, 4, 0, -1, -2], [0, 0, 0, 3, -1, 0], [0, -1, -1, -1, 4, -1], [0, 0, -2, 0, -1, 3]]]]], ['t03566', [7, 7, 3], [[110, [[2, -1, 0, 0, -1], [-1, 2, 0, 0, 0], [0, 0, 2, 0, -1], [0, 0, 0, 4, -1], [-1, 0, -1, -1, 6]]], [111, [[2, -1, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [0, 0, -1, 0, 4, -1], [-1, 0, 0, -1, -1, 6]]]]], ['t03607', [10, 4, 4, 3], [[143, [[2, 0, -1, 0, -1], [0, 2, 0, -1, -1], [-1, 0, 5, -2, 0], [0, -1, -2, 7, -1], [-1, -1, 0, -1, 3]]], [144, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 5, -2, 0], [0, 0, 0, -2, 4, 0], [0, -1, -1, 0, 0, 3]]]]], ['t03709', [7, 7, 4, 3, 3], [[134, [[2, 0, 0, -1, 0, 0], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, -1, 0], [0, 0, 0, -1, 5, 0], [0, -1, -1, 0, 0, 3]]], [135, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, -1, -1, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, -1, 0, 3, 0, 0], [0, 0, -1, 0, 0, 4, -3], [0, 0, 0, -1, 0, -3, 5]]]]], ['t03713', [7, 7, 3, 2], [[112, [[2, 0, 0, -1], [0, 3, -1, -1], [0, -1, 5, -2], [-1, -1, -2, 6]]], [113, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 3, 0, -1], [0, 0, 0, 3, -2], [-1, -1, -1, -2, 7]]]]], ['t03781', [4, 4, 4, 4, 3, 3], [[84, [[2, 0, 0, 0, 0, -1, 0], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [-1, -1, 0, 0, 0, 6, -4], [0, 0, 0, 0, -1, -4, 5]]], [85, [[2, -1, 0, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 0, 4, -3], [-1, 0, 0, 0, 0, -1, -3, 5]]]]], ['t03864', [7, 7, 4, 3, 2, 2], [[132, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1], [0, 0, 3, -1, -1, -1], [-1, 0, -1, 5, -2, 0], [0, 0, -1, -2, 3, 0], [0, -1, -1, 0, 0, 3]]], [133, [[2, 0, 0, 0, 0, -1, 0], [0, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, 0, 0, -1], [0, 0, 0, 3, -1, -1, -1], [0, -1, 0, -1, 3, -1, 0], [-1, 0, 0, -1, -1, 3, 0], [0, 0, -1, -1, 0, 0, 3]]]]], ['t03956', [7, 6, 2, 2], [[94, [[2, -1, -1, 0], [-1, 4, 0, -2], [-1, 0, 6, -4], [0, -2, -4, 7]]], [95, [[2, 0, -1, 0, 0], [0, 2, -1, -1, 0], [-1, -1, 4, 0, -1], [0, -1, 0, 6, -4], [0, 0, -1, -4, 5]]]]], ['t03979', [8, 6, 3, 2], [[114, [[5, 0, -1, -3], [0, 4, -1, -3], [-1, -1, 3, 0], [-3, -3, 0, 7]]], [115, [[2, -1, 0, 0, -1], [-1, 4, -1, -1, 0], [0, -1, 5, 0, -3], [0, -1, 0, 3, 0], [-1, 0, -3, 0, 4]]]]], ['t04003', [7, 7, 4, 2], [[119, [[2, 0, 0, -1], [0, 5, -2, -2], [0, -2, 5, -2], [-1, -2, -2, 6]]], [120, [[2, 0, 0, 0, -1], [0, 2, 0, 0, -1], [0, 0, 4, -1, -2], [0, 0, -1, 3, -2], [-1, -1, -2, -2, 7]]]]], ['t04019', [5, 5, 4, 4], [[85, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [-1, 0, -1, 0, 7, -5], [0, 0, 0, -1, -5, 6]]], [86, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, 0], [0, 0, 0, 2, 0, -1, 0], [0, 0, 0, 0, 2, 0, -1], [0, 0, 0, -1, 0, 5, -4], [-1, 0, 0, 0, -1, -4, 6]]]]], ['t04102', [7, 7, 3, 3, 2, 2], [[125, [[2, 0, 0, -1, -1, 0], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, -1, 0], [-1, 0, 0, -1, 5, -2], [0, 0, -1, 0, -2, 4]]], [126, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [-1, -1, -1, 0, 3, 0, 0], [0, -1, 0, 0, 0, 3, -1], [-1, 0, 0, -1, 0, -1, 4]]]]], ['t04180', [5, 5, 5, 5, 4, 2, 2], [[125, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 6, -2, -2], [0, 0, 0, 0, -2, 3, 0], [-1, 0, 0, -1, -2, 0, 4]]], [126, [[2, 0, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 0, 4, -1, 0], [0, -1, 0, 0, 0, -1, 3, -1], [-1, 0, 0, 0, -1, 0, -1, 3]]]]], ['t04228', [9, 7, 3, 3], [[150, [[2, 0, -1, 0, -1], [0, 2, -1, -1, 0], [-1, -1, 4, -1, 0], [0, -1, -1, 8, -3], [-1, 0, 0, -3, 4]]], [151, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 2, -1, -1, 0], [-1, 0, -1, 4, -1, -1], [0, 0, -1, -1, 4, -2], [0, 0, 0, -1, -2, 6]]]]], ['t04244', [11, 5, 5, 2, 2], [[180, [[2, 0, -1, -1, 0], [0, 2, 0, -1, -1], [-1, 0, 5, -1, -1], [-1, -1, -1, 7, -2], [0, -1, -1, -2, 4]]], [181, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 5, -1, 0], [0, -1, 0, -1, 3, 0], [-1, 0, -1, 0, 0, 4]]]]], ['t04382', [10, 6, 3, 3], [[156, [[2, 0, 0, -1, 0], [0, 2, 0, -1, 0], [0, 0, 7, -3, -2], [-1, -1, -3, 6, -1], [0, 0, -2, -1, 3]]], [157, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, -1, 0], [0, -1, 0, 7, -2, -2], [0, 0, -1, -2, 4, -1], [0, 0, 0, -2, -1, 3]]]]], ['t04721', [7, 7, 6, 2, 2, 2], [[147, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 7, -3, -2], [0, 0, 0, -3, 4, 0], [-1, 0, -1, -2, 0, 4]]], [148, [[2, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, -1, 0], [0, -1, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [0, 0, -1, 0, 5, -1, 0], [0, -1, 0, 0, -1, 3, -1], [-1, 0, 0, -1, 0, -1, 3]]]]], ['t05118', [11, 6, 4, 2, 2], [[182, [[2, 0, 0, -1, -1], [0, 6, 0, -2, -2], [0, 0, 3, -2, 0], [-1, -2, -2, 6, 0], [-1, -2, 0, 0, 3]]], [183, [[2, 0, -1, 0, 0, 0], [0, 2, 0, 0, -1, -1], [-1, 0, 6, 0, -1, -2], [0, 0, 0, 3, -2, 0], [0, -1, -1, -2, 4, 0], [0, -1, -2, 0, 0, 3]]]]], ['t05239', [11, 5, 3, 3], [[166, [[2, 0, -1, -1, 0], [0, 2, 0, -1, -1], [-1, 0, 6, -1, -1], [-1, -1, -1, 6, -2], [0, -1, -1, -2, 4]]], [167, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, -1, -1], [0, -1, 0, 6, -1, -1], [0, 0, -1, -1, 4, -1], [-1, 0, -1, -1, -1, 4]]]]], ['t05390', [6, 6, 5, 2, 2, 2], [[110, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, 0], [-1, 0, 0, -1, 5, -2], [0, 0, -1, 0, -2, 3]]], [111, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, -1, 0], [0, -1, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [-1, 0, -1, 0, 4, 0, 0], [0, -1, 0, 0, 0, 3, -1], [-1, 0, 0, -1, 0, -1, 3]]]]], ['t05425', [6, 6, 5, 3, 3], [[117, [[2, 0, 0, 0, -1, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -2, 0], [-1, -1, 0, -2, 6, -1], [-1, 0, -1, 0, -1, 3]]], [118, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0, 0], [0, 0, 2, 0, -1, -1, 0], [0, 0, 0, 2, 0, 0, -1], [0, -1, -1, 0, 4, -1, 0], [0, 0, -1, 0, -1, 4, -1], [-1, 0, 0, -1, 0, -1, 3]]]]], ['t05426', [11, 6, 5, 3, 2], [[196, [[3, 0, 0, -1, 0], [0, 3, -1, 0, -1], [0, -1, 3, -2, 0], [-1, 0, -2, 7, -3], [0, -1, 0, -3, 4]]], [197, [[2, 0, -1, 0, -1, 0], [0, 3, 0, 0, 0, -1], [-1, 0, 3, -1, 0, -1], [0, 0, -1, 3, 0, 0], [-1, 0, 0, 0, 3, -2], [0, -1, -1, 0, -2, 5]]]]], ['t05538', [5, 5, 5, 4, 3, 2], [[105, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 5, -2, -1, -1], [0, 0, -2, 3, 0, -1], [0, 0, -1, 0, 3, 0], [0, -1, -1, -1, 0, 3]]], [106, [[2, 0, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 4, -1, -2, 0], [0, 0, 0, -1, 3, 0, -1], [-1, 0, 0, -2, 0, 3, 0], [-1, 0, -1, 0, -1, 0, 3]]]]], ['t05564', [6, 6, 6, 4, 3], [[135, [[2, 0, 0, -1, -1, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 3, 0, 0], [-1, 0, 0, 0, 6, -3], [0, 0, -1, 0, -3, 4]]], [136, [[2, -1, 0, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 4, -2], [0, -1, 0, -1, 0, -2, 4]]]]], ['t05578', [9, 8, 3, 3, 2], [[168, [[2, -1, 0, -1, 0], [-1, 4, 0, -1, -1], [0, 0, 7, -1, -3], [-1, -1, -1, 3, 0], [0, -1, -3, 0, 4]]], [169, [[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, -1, 0], [0, -1, 5, 0, -1, -2], [0, 0, 0, 4, 0, -3], [-1, -1, -1, 0, 3, 0], [0, 0, -2, -3, 0, 5]]]]], ['t05658', [7, 6, 4, 3], [[112, [[2, 0, 0, -1, -1], [0, 4, 0, -2, -1], [0, 0, 4, 0, -1], [-1, -2, 0, 3, 0], [-1, -1, -1, 0, 4]]], [113, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, -1, 0], [0, 0, 4, -1, -2, -1], [0, 0, -1, 4, 0, -1], [0, -1, -2, 0, 3, 0], [0, 0, -1, -1, 0, 3]]]]], ['t05663', [8, 7, 4, 3], [[140, [[2, 0, -1, -1, 0], [0, 4, 0, -2, -1], [-1, 0, 7, 0, -2], [-1, -2, 0, 3, 0], [0, -1, -2, 0, 3]]], [141, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, -1, 0], [0, 0, 6, 0, -2, -3], [0, 0, 0, 3, 0, -2], [0, -1, -2, 0, 3, 0], [0, 0, -3, -2, 0, 5]]]]], ['t05674', [6, 6, 6, 5, 2, 2], [[142, [[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 4, -1, 0], [-1, 0, 0, -1, 5, -2], [0, 0, -1, 0, -2, 3]]], [143, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1, -1], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 4, 0, 0], [0, -1, 0, 0, 0, 3, -1], [-1, -1, 0, -1, 0, -1, 4]]]]], ['t05695', [5, 5, 5, 5, 3, 3], [[120, [[2, 0, 0, 0, 0, -1, -1], [0, 2, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [-1, -1, 0, 0, 0, 6, -2], [-1, 0, 0, 0, -1, -2, 4]]], [121, [[2, -1, 0, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, 0, -1], [0, 0, 2, 0, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 0, 4, -2], [0, -1, 0, 0, 0, -1, -2, 4]]]]], ['t06001', [7, 7, 4, 4], [[133, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [-1, 0, -1, 0, 7, -2], [0, -1, 0, -1, -2, 4]]], [134, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 2, 0, -1, 0], [0, 0, 0, 0, 2, 0, -1], [0, 0, 0, -1, 0, 5, -2], [0, 0, -1, 0, -1, -2, 4]]]]], ['t06440', [8, 8, 3, 3, 3], [[157, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [-1, 0, -1, 0, 6, -2], [-1, 0, 0, -1, -2, 5]]], [158, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, -1, 0], [0, 0, 0, 0, 2, 0, -1], [0, 0, 0, -1, 0, 4, -2], [0, -1, 0, 0, -1, -2, 5]]]]], ['t06463', [9, 9, 5, 3, 2], [[201, [[2, 0, 0, 0, -1], [0, 6, -1, -2, -1], [0, -1, 3, 0, -2], [0, -2, 0, 3, -1], [-1, -1, -2, -1, 6]]], [202, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1], [0, 0, 4, 0, -2, -1], [-1, 0, 0, 3, 0, 0], [0, 0, -2, 0, 3, -1], [-1, -1, -1, 0, -1, 5]]]]], ['t06525', [7, 7, 5, 3, 2], [[137, [[2, 0, 0, 0, -1], [0, 6, -1, -2, -1], [0, -1, 3, 0, -1], [0, -2, 0, 3, 0], [-1, -1, -1, 0, 3]]], [138, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, 0, -1], [0, 0, 4, 0, -2, -1], [-1, 0, 0, 3, 0, -1], [0, 0, -2, 0, 3, 0], [-1, -1, -1, -1, 0, 4]]]]], ['t06570', [8, 8, 5, 2, 2], [[162, [[2, 0, 0, -1, -1], [0, 2, 0, 0, -1], [0, 0, 4, -1, -3], [-1, 0, -1, 5, 0], [-1, -1, -3, 0, 6]]], [163, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, 0], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 4, 0, -3], [0, -1, 0, 0, 3, -2], [0, 0, -1, -3, -2, 7]]]]], ['t06605', [9, 9, 4, 4, 2, 2], [[203, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 6, -1, -2], [0, -1, 0, -1, 3, 0], [-1, 0, -1, -2, 0, 5]]], [204, [[2, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, 0, -1, 0, 0], [0, 0, 0, 2, 0, 0, -1], [0, -1, -1, 0, 4, -1, 0], [0, -1, 0, 0, -1, 3, -1], [-1, 0, 0, -1, 0, -1, 4]]]]], ['t07348', [6, 5, 4, 2, 2], [[86, [[2, -1, -1, 0, 0], [-1, 5, 0, -2, -1], [-1, 0, 4, 0, -1], [0, -2, 0, 3, -1], [0, -1, -1, -1, 3]]], [87, [[2, 0, -1, 0, 0, 0], [0, 2, 0, -1, 0, -1], [-1, 0, 3, -1, 0, -1], [0, -1, -1, 4, -2, 0], [0, 0, 0, -2, 3, 0], [0, -1, -1, 0, 0, 3]]]]], ['t08111', [5, 5, 3, 3, 2], [[73, [[2, 0, -1, 0, 0], [0, 2, 0, 0, -1], [-1, 0, 3, -1, -1], [0, 0, -1, 5, -3], [0, -1, -1, -3, 5]]], [74, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, -1], [0, 0, 0, 0, 3, -1], [-1, 0, -1, -1, -1, 4]]]]], ['t08201', [7, 4, 4, 2], [[86, [[2, 0, 0, -1], [0, 4, -2, -1], [0, -2, 5, -2], [-1, -1, -2, 5]]], [87, [[2, 0, -1, 0, 0], [0, 2, 0, 0, -1], [-1, 0, 4, -1, -1], [0, 0, -1, 3, -2], [0, -1, -1, -2, 5]]]]], ['t08267', [8, 7, 3, 3, 2], [[136, [[2, -1, 0, -1, 0], [-1, 4, 0, -1, -1], [0, 0, 4, 0, -2], [-1, -1, 0, 3, -1], [0, -1, -2, -1, 5]]], [137, [[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, -1, 0], [0, -1, 4, -1, -1, -1], [0, 0, -1, 3, 0, -1], [-1, -1, -1, 0, 3, 0], [0, 0, -1, -1, 0, 4]]]]], ['t08403', [9, 4, 2, 2], [[106, [[2, -1, -1, 0], [-1, 7, -2, -1], [-1, -2, 5, -1], [0, -1, -1, 3]]], [107, [[2, 0, -1, 0, 0], [0, 2, -1, -1, 0], [-1, -1, 7, -1, -1], [0, -1, -1, 3, -1], [0, 0, -1, -1, 3]]]]], ['t09016', [9, 5, 4, 3, 2], [[136, [[3, 0, 0, 0, -1], [0, 3, -1, -1, -1], [0, -1, 6, -2, -1], [0, -1, -2, 3, 0], [-1, -1, -1, 0, 3]]], [137, [[2, 0, -1, 0, -1, 0], [0, 3, 0, 0, 0, -1], [-1, 0, 3, -1, 0, -1], [0, 0, -1, 3, 0, -1], [-1, 0, 0, 0, 3, 0], [0, -1, -1, -1, 0, 3]]]]], ['t09267', [7, 7, 4], [[117, [[2, -1, 0, -1, 0], [-1, 2, 0, 0, -1], [0, 0, 2, 0, -1], [-1, 0, 0, 7, -3], [0, -1, -1, -3, 6]]], [118, [[2, -1, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 2, 0, -1], [0, 0, 0, 0, 5, -3], [0, 0, -1, -1, -3, 6]]]]], ['t09313', [7, 7, 6, 3, 3], [[154, [[2, 0, 0, -1, 0, 0], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 7, -2, -3], [0, 0, 0, -2, 3, 0], [0, -1, -1, -3, 0, 5]]], [155, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, -1, -1, 0], [0, 0, 0, 2, 0, 0, -1], [0, 0, -1, 0, 5, -2, 0], [0, 0, -1, 0, -2, 4, -1], [-1, 0, 0, -1, 0, -1, 3]]]]], ['t09455', [7, 7, 3, 3, 3], [[127, [[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [-1, 0, -1, 0, 6, -4], [0, 0, 0, -1, -4, 6]]], [128, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, -1, 0], [0, 0, 0, 0, 2, 0, -1], [0, 0, 0, -1, 0, 4, -3], [-1, 0, 0, 0, -1, -3, 6]]]]], ['t09580', [9, 5, 2, 2], [[115, [[2, -1, -1, 0], [-1, 7, -2, -2], [-1, -2, 5, -1], [0, -2, -1, 4]]], [116, [[2, 0, -1, 0, -1], [0, 2, 0, -1, 0], [-1, 0, 6, -1, -2], [0, -1, -1, 3, 0], [-1, 0, -2, 0, 4]]]]], ['t09704', [8, 8, 6, 3, 3], [[184, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 7, -2, -1], [0, 0, 0, -2, 3, 0], [-1, -1, -1, -1, 0, 4]]], [185, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, -1, 0, -1], [0, 0, 0, 2, 0, 0, -1], [0, 0, -1, 0, 5, -2, -1], [0, 0, 0, 0, -2, 3, 0], [0, -1, -1, -1, -1, 0, 4]]]]], ['t09852', [6, 5, 3], [[72, [[2, 0, -1, 0], [0, 5, -2, -2], [-1, -2, 6, -2], [0, -2, -2, 4]]], [73, [[2, -1, 0, 0, 0], [-1, 2, -1, 0, 0], [0, -1, 3, -1, -1], [0, 0, -1, 4, -2], [0, 0, -1, -2, 5]]]]], ['t09954', [6, 5, 4, 2], [[82, [[5, 0, -3, -1], [0, 4, -1, -1], [-3, -1, 5, -1], [-1, -1, -1, 3]]], [83, [[2, -1, 0, 0, 0], [-1, 5, 0, -3, -1], [0, 0, 3, -1, -1], [0, -3, -1, 4, 0], [0, -1, -1, 0, 3]]]]], ['t10188', [5, 4, 3, 2, 2], [[59, [[2, -1, 0, -1, 0], [-1, 4, 0, 0, -2], [0, 0, 3, -1, -1], [-1, 0, -1, 3, 0], [0, -2, -1, 0, 3]]]]], ['t10230', [6, 4, 3, 3], [[72, [[2, 0, -1, 0, -1], [0, 2, -1, 0, -1], [-1, -1, 4, -1, 0], [0, 0, -1, 5, -1], [-1, -1, 0, -1, 3]]], [73, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 2, 0, -1, 0], [-1, 0, 0, 4, -2, -1], [0, 0, -1, -2, 4, -1], [0, 0, 0, -1, -1, 3]]]]], ['t10462', [9, 4, 4, 3, 2], [[127, [[2, 0, -1, 0, -1], [0, 5, 0, -2, -1], [-1, 0, 3, 0, 0], [0, -2, 0, 3, -1], [-1, -1, 0, -1, 4]]], [128, [[2, 0, 0, 0, -1, -1], [0, 2, 0, 0, 0, -1], [0, 0, 5, -1, -2, 0], [0, 0, -1, 3, 0, -1], [-1, 0, -2, 0, 3, 0], [-1, -1, 0, -1, 0, 3]]]]], ['t10643', [6, 6, 6, 5, 3, 2], [[147, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 6, -1, -2, -3], [0, 0, -1, 3, 0, 0], [0, 0, -2, 0, 3, 0], [0, -1, -3, 0, 0, 4]]], [148, [[2, 0, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, 0, -1], [0, 0, 0, 4, 0, -2, 0], [-1, 0, 0, 0, 3, 0, -2], [0, 0, 0, -2, 0, 3, -1], [0, 0, -1, 0, -2, -1, 4]]]]], ['t10681', [11, 5, 5, 3, 2], [[185, [[2, 0, -1, 0, -1], [0, 5, 0, -2, -1], [-1, 0, 6, -1, -1], [0, -2, -1, 3, 0], [-1, -1, -1, 0, 3]]], [186, [[2, 0, 0, 0, -1, 0], [0, 2, 0, -1, 0, -1], [0, 0, 6, 0, -2, -2], [0, -1, 0, 3, 0, -1], [-1, 0, -2, 0, 3, 0], [0, -1, -2, -1, 0, 4]]]]], ['t10985', [11, 6, 3, 3], [[177, [[2, 0, -1, -1, 0], [0, 2, 0, -1, 0], [-1, 0, 6, -1, -2], [-1, -1, -1, 6, -1], [0, 0, -2, -1, 3]]], [178, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 2, 0, -1, 0], [-1, 0, 0, 6, -1, -2], [0, 0, -1, -1, 4, -1], [0, 0, 0, -2, -1, 3]]]]], ['t11556', [6, 4, 3, 2], [[66, [[5, -1, -1, -2], [-1, 3, 0, -1], [-1, 0, 3, -1], [-2, -1, -1, 4]]]]], ['t11852', [6, 5, 3, 3, 2], [[84, [[2, 0, -1, -1, 0], [0, 4, 0, 0, -3], [-1, 0, 3, 0, -1], [-1, 0, 0, 3, -1], [0, -3, -1, -1, 5]]], [85, [[2, 0, -1, -1, 0, 0], [0, 2, 0, -1, 0, 0], [-1, 0, 4, 0, -2, -1], [-1, -1, 0, 3, 0, -1], [0, 0, -2, 0, 3, 0], [0, 0, -1, -1, 0, 3]]]]], ['t12753', [7, 5, 3, 3], [[94, [[2, 0, -1, -1, 0], [0, 2, -1, 0, -1], [-1, -1, 4, 0, -1], [-1, 0, 0, 4, -1], [0, -1, -1, -1, 4]]]]], ['v0082', [5, 5, 5, 2], [[81, [[2, 0, 0, 0, -1], [0, 2, -1, 0, 0], [0, -1, 2, 0, -1], [0, 0, 0, 3, -1], [-1, 0, -1, -1, 6]]], [82, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 3, -1], [-1, 0, 0, -1, -1, 6]]]]], ['v0114', [5, 5, 5, 3, 2, 2], [[93, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 3, -1, 0], [0, 0, 0, -1, 4, 0], [-1, 0, -1, 0, 0, 3]]], [94, [[2, 0, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 3, 0, 0], [0, -1, 0, 0, 0, 3, -2], [0, 0, 0, -1, 0, -2, 4]]]]], ['v0165', [3, 3, 3, 3, 3, 2, 2], [[54, [[2, 0, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [-1, 0, 0, 0, 0, 5, -3], [0, 0, 0, 0, -1, -3, 4]]], [55, [[2, 0, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0, 0, 0], [0, 0, -1, 2, -1, 0, 0, 0], [0, 0, 0, -1, 2, -1, 0, 0], [0, 0, 0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 0, 0, 3, -2], [-1, 0, 0, 0, 0, -1, -2, 4]]]]], ['v0220', [7, 7, 3, 2, 2], [[116, [[2, 0, -1, -1, 0], [0, 2, 0, 0, -1], [-1, 0, 3, -1, -1], [-1, 0, -1, 5, -2], [0, -1, -1, -2, 6]]], [117, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, -1, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, -1], [0, -1, 0, 0, 3, -1], [-1, 0, -1, -1, -1, 6]]]]], ['v0223', [7, 7, 4, 3, 2], [[128, [[2, 0, 0, 0, -1], [0, 5, -2, -1, -1], [0, -2, 5, -2, 0], [0, -1, -2, 3, 0], [-1, -1, 0, 0, 3]]], [129, [[2, 0, 0, 0, -1, 0], [0, 2, 0, 0, 0, -1], [0, 0, 4, -1, -1, -1], [0, 0, -1, 3, -2, 0], [-1, 0, -1, -2, 4, 0], [0, -1, -1, 0, 0, 3]]]]], ['v0330', [7, 2, 2], [[59, [[2, 0, -1, 0], [0, 2, -1, -1], [-1, -1, 7, 0], [0, -1, 0, 3]]], [60, [[2, -1, 0, 0, -1], [-1, 2, 0, -1, 0], [0, 0, 2, -1, -1], [0, -1, -1, 7, 0], [-1, 0, -1, 0, 3]]]]], ['v0398', [7, 5, 2, 2, 2], [[87, [[2, -1, 0, 0, -1], [-1, 2, -1, 0, 0], [0, -1, 3, 0, 0], [0, 0, 0, 5, -2], [-1, 0, 0, -2, 4]]], [88, [[2, 0, 0, 0, -1, -1], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [0, 0, -1, 3, 0, 0], [-1, 0, 0, 0, 5, -2], [-1, -1, 0, 0, -2, 4]]]]], ['v0407', [8, 3, 3, 2, 2], [[91, [[2, 0, -1, 0, -1], [0, 2, 0, -1, -1], [-1, 0, 4, 0, 0], [0, -1, 0, 4, 0], [-1, -1, 0, 0, 3]]], [92, [[2, 0, 0, 0, -1, -1], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, -1, -1], [0, -1, 0, 4, 0, 0], [-1, 0, -1, 0, 4, 0], [-1, -1, -1, 0, 0, 3]]]]], ['v0424', [8, 3, 2, 2], [[82, [[2, -1, -1, 0], [-1, 6, 0, -1], [-1, 0, 5, -3], [0, -1, -3, 4]]], [83, [[2, 0, 0, 0, -1], [0, 2, -1, -1, 0], [0, -1, 6, 0, -1], [0, -1, 0, 3, -2], [-1, 0, -1, -2, 4]]]]], ['v0434', [8, 5, 3], [[100, [[2, -1, -1, 0], [-1, 7, -2, -2], [-1, -2, 6, -2], [0, -2, -2, 4]]], [101, [[2, -1, 0, 0, -1], [-1, 2, -1, 0, 0], [0, -1, 7, -2, -2], [0, 0, -2, 4, -1], [-1, 0, -2, -1, 4]]]]], ['v0497', [8, 5, 3, 3], [[109, [[2, 0, 0, -1, 0], [0, 2, -1, 0, -1], [0, -1, 3, 0, 0], [-1, 0, 0, 4, -1], [0, -1, 0, -1, 4]]], [110, [[2, -1, 0, 0, 0, -1], [-1, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, -1], [0, 0, -1, 3, 0, 0], [0, -1, 0, 0, 4, -1], [-1, 0, -1, 0, -1, 4]]]]], ['v0554', [7, 2, 2, 2, 2], [[66, [[2, -1, 0, 0, -1], [-1, 2, -1, 0, 0], [0, -1, 2, 0, 0], [0, 0, 0, 6, -3], [-1, 0, 0, -3, 5]]], [67, [[2, 0, 0, 0, -1, 0], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [0, 0, -1, 2, 0, 0], [-1, 0, 0, 0, 6, -2], [0, -1, 0, 0, -2, 3]]]]], ['v0570', [5, 5, 5, 3], [[86, [[2, 0, 0, -1, -1], [0, 2, -1, 0, 0], [0, -1, 2, 0, -1], [-1, 0, 0, 6, -3], [-1, 0, -1, -3, 6]]], [87, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [0, 0, 0, 0, 4, -3], [0, -1, 0, -1, -3, 6]]]]], ['v0573', [5, 5, 5, 2, 2, 2], [[88, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [0, -1, 0, 0, 5, -3], [0, 0, 0, -1, -3, 5]]], [89, [[2, 0, 0, 0, 0, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 3, -2], [-1, 0, 0, 0, -1, -2, 5]]]]], ['v0707', [4, 4, 4, 3, 2, 2], [[66, [[2, 0, 0, -1, -1, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 3, -1, 0], [-1, 0, 0, -1, 5, -2], [0, 0, -1, 0, -2, 3]]], [67, [[2, 0, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, -1, 0, 0, 3, 0, 0], [0, -1, 0, 0, 0, 3, -1], [-1, 0, 0, -1, 0, -1, 3]]]]], ['v0709', [5, 4, 4], [[60, [[2, -1, 0, 0, 0], [-1, 2, 0, 0, -1], [0, 0, 2, 0, -1], [0, 0, 0, 6, -5], [0, -1, -1, -5, 7]]], [61, [[2, -1, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, 0], [0, 0, 0, 2, 0, -1], [0, 0, -1, 0, 6, -4], [0, 0, 0, -1, -4, 5]]]]], ['v0715', [9, 4, 3, 2], [[111, [[7, -1, -2, -1], [-1, 5, -1, -2], [-2, -1, 3, 0], [-1, -2, 0, 3]]], [112, [[2, 0, 0, -1, -1], [0, 7, -1, -2, -1], [0, -1, 3, 0, -1], [-1, -2, 0, 3, 0], [-1, -1, -1, 0, 3]]]]], ['v0740', [4, 4, 4, 4, 3, 2], [[78, [[2, -1, 0, 0, 0, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [0, 0, 0, 3, -1, 0], [0, 0, 0, -1, 5, -2], [0, 0, -1, 0, -2, 3]]], [79, [[2, 0, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0, 0], [0, -1, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [-1, 0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 3, -2], [-1, 0, 0, -1, 0, -2, 4]]]]], ['v0741', [9, 5, 4, 2, 2], [[131, [[2, 0, 0, -1, -1], [0, 3, 0, -1, 0], [0, 0, 3, -1, -1], [-1, -1, -1, 6, -2], [-1, 0, -1, -2, 4]]], [132, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, 0], [0, 0, 3, 0, 0, -1], [-1, 0, 0, 3, -1, -1], [0, -1, 0, -1, 3, 0], [-1, 0, -1, -1, 0, 4]]]]], ['v0759', [8, 3, 3], [[84, [[2, 0, -1, -1], [0, 2, -1, -1], [-1, -1, 7, -2], [-1, -1, -2, 6]]], [85, [[2, -1, 0, -1, 0], [-1, 2, 0, 0, 0], [0, 0, 2, -1, -1], [-1, 0, -1, 7, -2], [0, 0, -1, -2, 4]]]]], ['v0765', [7, 5, 2], [[80, [[2, -1, 0, -1], [-1, 7, 0, -4], [0, 0, 3, -2], [-1, -4, -2, 7]]], [81, [[2, -1, -1, 0, 0], [-1, 2, 0, -1, 0], [-1, 0, 7, 0, -4], [0, -1, 0, 3, -1], [0, 0, -4, -1, 5]]]]], ['v0847', [7, 4, 4], [[84, [[2, -1, 0, -1, 0], [-1, 2, 0, 0, -1], [0, 0, 2, 0, -1], [-1, 0, 0, 4, -2], [0, -1, -1, -2, 7]]], [85, [[2, -1, 0, 0, -1, 0], [-1, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, 0], [0, 0, 0, 2, 0, -1], [-1, 0, 0, 0, 4, -2], [0, 0, 0, -1, -2, 5]]]]], ['v0912', [7, 6, 2, 2, 2], [[98, [[2, -1, 0, 0, -1], [-1, 2, -1, 0, 0], [0, -1, 4, 0, -2], [0, 0, 0, 4, -3], [-1, 0, -2, -3, 7]]], [99, [[2, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, -1], [0, -1, 2, -1, 0, 0], [-1, 0, -1, 4, 0, -1], [0, 0, 0, 0, 4, -3], [0, -1, 0, -1, -3, 5]]]]], ['v0939', [5, 5, 4, 2], [[71, [[2, 0, 0, -1], [0, 6, -3, -2], [0, -3, 5, -1], [-1, -2, -1, 4]]], [72, [[2, 0, 0, 0, -1], [0, 2, 0, 0, -1], [0, 0, 4, -1, 0], [0, 0, -1, 3, -1], [-1, -1, 0, -1, 3]]]]], ['v0945', [8, 5, 3, 2, 2], [[107, [[2, 0, 0, -1, -1], [0, 3, 0, -1, 0], [0, 0, 6, -1, -2], [-1, -1, -1, 3, 0], [-1, 0, -2, 0, 3]]], [108, [[2, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, 0], [0, 0, 3, 0, 0, -1], [0, 0, 0, 4, -2, -2], [0, -1, 0, -2, 3, 0], [-1, 0, -1, -2, 0, 4]]]]], ['v1077', [7, 7, 3, 3, 2], [[121, [[2, 0, -1, 0, 0], [0, 2, 0, 0, -1], [-1, 0, 3, -1, 0], [0, 0, -1, 5, -2], [0, -1, 0, -2, 4]]], [122, [[2, 0, 0, -1, 0, -1], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [-1, -1, 0, 3, 0, 0], [0, 0, 0, 0, 3, -2], [-1, 0, -1, 0, -2, 5]]]]], ['v1109', [7, 7, 4, 2, 2], [[123, [[2, 0, -1, 0, 0], [0, 2, 0, 0, -1], [-1, 0, 6, -2, -2], [0, 0, -2, 3, -1], [0, -1, -2, -1, 5]]], [124, [[2, 0, 0, 0, 0, -1], [0, 2, 0, -1, 0, 0], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -2, -1], [0, 0, 0, -2, 3, -1], [-1, 0, -1, -1, -1, 5]]]]], ['v1300', [7, 3], [[61, [[2, -1, 0, 0], [-1, 2, -1, 0], [0, -1, 6, -1], [0, 0, -1, 4]]], [62, [[2, -1, 0, 0, -1], [-1, 2, -1, 0, 0], [0, -1, 2, -1, 0], [0, 0, -1, 6, -1], [-1, 0, 0, -1, 4]]]]], ['v1392', [7, 3, 2], [[63, [[6, -2, -1], [-2, 5, -1], [-1, -1, 3]]], [64, [[2, -1, 0, -1], [-1, 7, -2, -1], [0, -2, 3, 0], [-1, -1, 0, 3]]]]], ['v1547', [7, 4, 2], [[70, [[6, -2, -2], [-2, 5, -2], [-2, -2, 5]]], [71, [[2, -1, 0, 0], [-1, 6, -1, -2], [0, -1, 3, -2], [0, -2, -2, 5]]]]], ['v1620', [4, 4, 4, 3, 3], [[68, [[2, 0, 0, 0, -1, 0], [0, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [-1, -1, 0, 0, 6, -4], [0, 0, 0, -1, -4, 5]]], [69, [[2, -1, 0, 0, 0, 0, -1], [-1, 2, 0, 0, 0, 0, 0], [0, 0, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 4, -3], [-1, 0, 0, 0, -1, -3, 5]]]]], ['v1628', [7, 4, 3, 3], [[85, [[2, 0, 0, 0, -1], [0, 2, -1, 0, -1], [0, -1, 3, 0, 0], [0, 0, 0, 5, -1], [-1, -1, 0, -1, 3]]], [86, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, -1, 0, -1], [0, 0, -1, 3, 0, 0], [-1, 0, 0, 0, 5, -1], [0, -1, -1, 0, -1, 3]]]]], ['v1690', [7, 4, 3, 2, 2], [[83, [[2, 0, 0, -1, 0], [0, 3, 0, 0, -1], [0, 0, 3, -2, -1], [-1, 0, -2, 5, -1], [0, -1, -1, -1, 3]]], [84, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, -1, 0], [0, 0, 3, 0, 0, -1], [-1, 0, 0, 3, -1, -1], [0, -1, 0, -1, 3, -1], [0, 0, -1, -1, -1, 3]]]]], ['v1709', [7, 5, 3, 2], [[88, [[5, -2, -1, -1], [-2, 6, -1, -2], [-1, -1, 3, 0], [-1, -2, 0, 3]]], [89, [[2, -1, 0, -1, 0], [-1, 4, 0, -1, -1], [0, 0, 3, 0, -2], [-1, -1, 0, 3, 0], [0, -1, -2, 0, 4]]]]], ['v1716', [7, 3, 3, 2, 2], [[76, [[2, 0, -1, 0, -1], [0, 2, 0, -1, -1], [-1, 0, 5, -1, -1], [0, -1, -1, 4, 0], [-1, -1, -1, 0, 3]]], [77, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, -1], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 4, -1, 0], [0, -1, 0, -1, 3, 0], [-1, -1, -1, 0, 0, 3]]]]], ['v1718', [8, 3, 3, 3], [[93, [[2, 0, 0, -1, -1], [0, 2, -1, 0, -1], [0, -1, 2, 0, 0], [-1, 0, 0, 5, -2], [-1, -1, 0, -2, 6]]], [94, [[2, -1, 0, 0, -1, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 2, -1, 0, -1], [0, 0, -1, 2, 0, 0], [-1, 0, 0, 0, 5, -2], [0, 0, -1, 0, -2, 4]]]]], ['v1728', [6, 5, 2, 2, 2], [[74, [[2, -1, 0, 0, -1], [-1, 2, -1, 0, 0], [0, -1, 4, -1, -1], [0, 0, -1, 5, -2], [-1, 0, -1, -2, 4]]], [75, [[2, 0, 0, -1, 0, 0], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, -1, 0], [-1, 0, 0, 3, -1, -1], [0, 0, -1, -1, 3, -1], [0, 0, 0, -1, -1, 4]]]]], ['v1810', [5, 5, 5, 4, 2, 2], [[100, [[2, 0, 0, -1, 0, -1], [0, 2, -1, 0, 0, 0], [0, -1, 2, 0, 0, -1], [-1, 0, 0, 6, -2, -2], [0, 0, 0, -2, 3, 0], [-1, 0, -1, -2, 0, 4]]], [101, [[2, 0, 0, 0, 0, 0, -1], [0, 2, 0, 0, -1, -1, 0], [0, 0, 2, -1, 0, 0, 0], [0, 0, -1, 2, 0, 0, -1], [0, -1, 0, 0, 4, -1, 0], [0, -1, 0, 0, -1, 3, -1], [-1, 0, 0, -1, 0, -1, 3]]]]], ['v1832', [6, 5, 3, 3], [[81, [[2, 0, 0, -1, 0], [0, 2, -1, 0, -1], [0, -1, 5, -1, -2], [-1, 0, -1, 4, -1], [0, -1, -2, -1, 4]]], [82, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, -1, 0, 0], [0, 0, 2, 0, -1, 0], [0, -1, 0, 3, -1, -1], [0, 0, -1, -1, 4, -1], [0, 0, 0, -1, -1, 3]]]]], ['v1839', [9, 5, 3, 2], [[120, [[6, -1, -1, -2], [-1, 6, -2, -1], [-1, -2, 3, 0], [-2, -1, 0, 3]]], [121, [[2, -1, 0, -1, 0], [-1, 6, -1, 0, -2], [0, -1, 3, 0, -1], [-1, 0, 0, 3, 0], [0, -2, -1, 0, 3]]]]], ['v1921', [8, 5, 2, 2], [[98, [[2, -1, -1, 0], [-1, 6, 0, -3], [-1, 0, 5, -1], [0, -3, -1, 4]]], [99, [[2, 0, 0, 0, -1], [0, 2, 0, -1, 0], [0, 0, 7, -2, -3], [0, -1, -2, 3, 0], [-1, 0, -3, 0, 4]]]]], ['v1940', [7, 6, 3, 3], [[105, [[2, 0, 0, 0, -1], [0, 2, -1, 0, -1], [0, -1, 5, 0, -3], [0, 0, 0, 3, -2], [-1, -1, -3, -2, 7]]], [106, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, -1, 0, 0], [0, 0, 2, -1, 0, -1], [0, -1, -1, 5, 0, -2], [0, 0, 0, 0, 3, -2], [0, 0, -1, -2, -2, 5]]]]], ['v1966', [8, 6, 3, 3], [[120, [[2, 0, -1, 0, -1], [0, 2, -1, 0, -1], [-1, -1, 4, 0, -1], [0, 0, 0, 3, -2], [-1, -1, -1, -2, 7]]], [121, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, 0, 0], [0, 0, 2, -1, 0, -1], [-1, 0, -1, 4, 0, -1], [0, 0, 0, 0, 3, -2], [0, 0, -1, -1, -2, 5]]]]], ['v1980', [5, 3, 3, 2], [[48, [[2, 0, 0, -1], [0, 5, -3, -1], [0, -3, 5, -1], [-1, -1, -1, 3]]], [49, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 4, -1, -1], [0, 0, -1, 3, 0], [-1, -1, -1, 0, 3]]]]], ['v1986', [6, 6, 4, 3], [[99, [[2, 0, -1, -1, 0], [0, 2, 0, 0, -1], [-1, 0, 3, 0, 0], [-1, 0, 0, 6, -3], [0, -1, 0, -3, 4]]], [100, [[2, -1, 0, -1, 0, 0], [-1, 2, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 3, 0, 0], [0, 0, 0, 0, 4, -2], [0, -1, -1, 0, -2, 4]]]]], ['v2024', [6, 6, 5, 2, 2], [[106, [[2, 0, 0, -1, 0], [0, 2, 0, 0, -1], [0, 0, 4, -1, 0], [-1, 0, -1, 5, -2], [0, -1, 0, -2, 3]]], [107, [[2, 0, 0, -1, 0, -1], [0, 2, 0, 0, -1, -1], [0, 0, 2, 0, 0, -1], [-1, 0, 0, 4, 0, 0], [0, -1, 0, 0, 3, -1], [-1, -1, -1, 0, -1, 4]]]]], ['v2090', [9, 4, 4, 2, 2], [[122, [[2, 0, -1, 0, -1], [0, 2, 0, -1, -1], [-1, 0, 5, 0, -2], [0, -1, 0, 3, -1], [-1, -1, -2, -1, 6]]], [123, [[2, 0, 0, -1, 0, 0], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, -1, -1], [-1, -1, 0, 5, 0, -1], [0, 0, -1, 0, 3, -1], [0, -1, -1, -1, -1, 4]]]]], ['v2215', [5, 5, 4, 3, 2], [[80, [[2, 0, 0, 0, -1], [0, 5, -2, -1, -1], [0, -2, 3, 0, -1], [0, -1, 0, 3, 0], [-1, -1, -1, 0, 3]]], [81, [[2, 0, 0, 0, -1, -1], [0, 2, 0, 0, 0, -1], [0, 0, 4, -1, -2, 0], [0, 0, -1, 3, 0, -1], [-1, 0, -2, 0, 3, 0], [-1, -1, 0, -1, 0, 3]]]]], ['v2325', [5, 5, 5, 3, 3], [[95, [[2, 0, 0, 0, -1, -1], [0, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, 0], [0, 0, -1, 2, 0, -1], [-1, -1, 0, 0, 6, -2], [-1, 0, 0, -1, -2, 4]]], [96, [[2, -1, 0, 0, 0, 0, 0], [-1, 2, 0, 0, 0, 0, -1], [0, 0, 2, 0, 0, -1, 0], [0, 0, 0, 2, -1, 0, 0], [0, 0, 0, -1, 2, 0, -1], [0, 0, -1, 0, 0, 4, -2], [0, -1, 0, 0, -1, -2, 4]]]]], ['v2759', [7, 4], [[68, [[2, -1, -1, 0], [-1, 2, 0, -1], [-1, 0, 6, -3], [0, -1, -3, 7]]], [69, [[2, -1, 0, -1, 0], [-1, 2, -1, 0, 0], [0, -1, 2, 0, 0], [-1, 0, 0, 6, -3], [0, 0, 0, -3, 5]]]]], ['v2930', [7, 3, 3, 3], [[78, [[2, 0, 0, 0, -1], [0, 2, -1, 0, -1], [0, -1, 2, 0, 0], [0, 0, 0, 6, -4], [-1, -1, 0, -4, 6]]], [79, [[2, -1, 0, 0, 0, 0], [-1, 2, 0, 0, -1, 0], [0, 0, 2, -1, 0, -1], [0, 0, -1, 2, 0, 0], [0, -1, 0, 0, 6, -3], [0, 0, -1, 0, -3, 4]]]]], ['v3354', [6, 6, 5, 3, 2], [[111, [[2, 0, 0, 0, -1], [0, 6, -1, -2, -3], [0, -1, 3, 0, 0], [0, -2, 0, 3, 0], [-1, -3, 0, 0, 4]]], [112, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1], [0, 0, 4, 0, -2, 0], [-1, 0, 0, 3, 0, -2], [0, 0, -2, 0, 3, -1], [0, -1, 0, -2, -1, 4]]]]]]
len(GOERITZ)
Out[3]:
393

In addition we will need the following databases.

In [6]:
import pandas
import time 
import snappy 
import math

exceptional_filllings = pandas.read_csv("exceptional_fillings.csv") 
# We load Dunfield's list from of all exceptional surgeries along the SnapPy CensusKnots.
DBChomologies = pandas.read_csv("DBChomologies.csv") 
# We load a list of all alternating links in the HTLinkExteriors together with their homologies 
#(if the homology is cyclic) and their crossing numbers.
### REMARK: To build the list DBChomologies we need to run the code in the file Build_DBChomologies which 
#takes around 45 minutes. Here we just load it.

First we build a list of all possible integer alternating slopes (measured w.r.t. the SnapPy basis). Note that some integer slopes will not be integer in the SnapPy basis (we refer to the paper for more discussion).

In [7]:
def RecomputingSlopes(knot):
    """
    Given a knot such that the (1,0)-filling is S3, it returns an integer n such that lambda_snappy=n mu+ lambda_Seifert.
    Warning: If the (1,0)-filling is not S3 it returns False.
    """
    if exceptional_filllings.loc[(exceptional_filllings['cusped'] == knot) & (exceptional_filllings['kind'] == 'S3')]['slope'].tolist()!=['(1, 0)']:
        return False
    M=snappy.Manifold(knot)
    M.dehn_fill([(0,1)])
    x=M.homology().order()
    M.dehn_fill([(1,1)])
    y=M.homology().order()
    if y+1==x:
        n=-x
    if y-1==x:
        n=x
    return n

def Seifert_slopes_to_geometric_slopes(knot,Seifert_slope):
    '''
    Takes as input a Seifert slope and returns the slope measured with respect to the SnapPy basis.
    '''
    S3_fillling_string=exceptional_filllings.loc[(exceptional_filllings['cusped'] == knot) & (exceptional_filllings['kind'] == 'S3')]['slope'].tolist()
    S3_filling_string_without_brackets=S3_fillling_string[0][1:-1]
    (a,b)=tuple(map(int, S3_filling_string_without_brackets.split(', ')))
    K=snappy.Manifold(knot)
    (c,d)=K.homological_longitude()
    (p,q)=Seifert_slope
    return (p*a+q*c,p*b+q*d)
In [8]:
### We create a list of all integer surgeries (measured w.r.t. the SnapPy basis).
start_time = time.time()
possible_integer_slopes=[]

for G in GOERITZ:
    if RecomputingSlopes(G[0])==False:
        for x in G[2]:
            (p,q)=Seifert_slopes_to_geometric_slopes(G[0],(x[0],1))
            if abs(p)>5 or abs(q)>5:
                (p,q)=Seifert_slopes_to_geometric_slopes(G[0],(-x[0],1))
            if q<0:
                (p,q)=(-p,-q)
            if q==0:
                (p,q)=(1,0)
            possible_integer_slopes.append([G[0],(p,q)])
    else:
        for x in G[2]:
            n=RecomputingSlopes(G[0])
            if n<0:
                possible_integer_slopes.append([G[0],(-x[0]-n,1)])
            if n>0:
                possible_integer_slopes.append([G[0],(x[0]-n,1)])
possible_integer_slopes.sort() 
print("--- Time taken: %s seconds ---" % (time.time() - start_time))
--- Time taken: 26.110875129699707 seconds ---
In [9]:
print(possible_integer_slopes)
[['m016', (-1, 1)], ['m016', (0, 1)], ['m071', (-1, 1)], ['m071', (0, 1)], ['m082', (0, 1)], ['m082', (1, 1)], ['m103', (-1, 1)], ['m103', (0, 1)], ['m118', (-1, 1)], ['m118', (0, 1)], ['m144', (-1, 1)], ['m144', (0, 1)], ['m194', (0, 1)], ['m194', (1, 1)], ['m198', (0, 1)], ['m198', (1, 1)], ['m239', (-1, 1)], ['m239', (0, 1)], ['m240', (-1, 1)], ['m240', (1, 0)], ['m270', (1, 0)], ['m270', (1, 1)], ['m276', (1, 0)], ['m276', (1, 1)], ['m281', (0, 1)], ['m281', (1, 1)], ['o9_00133', (-1, 1)], ['o9_00133', (0, 1)], ['o9_00168', (0, 1)], ['o9_00168', (1, 1)], ['o9_00644', (-1, 1)], ['o9_00644', (0, 1)], ['o9_00797', (-1, 1)], ['o9_00797', (0, 1)], ['o9_00815', (-1, 1)], ['o9_00815', (0, 1)], ['o9_01436', (0, 1)], ['o9_01436', (1, 1)], ['o9_01496', (-1, 1)], ['o9_01496', (0, 1)], ['o9_01584', (-1, 1)], ['o9_01584', (0, 1)], ['o9_01621', (0, 1)], ['o9_01621', (1, 1)], ['o9_01680', (1, 0)], ['o9_01680', (1, 1)], ['o9_01765', (-1, 1)], ['o9_01765', (1, 0)], ['o9_01953', (0, 1)], ['o9_01953', (1, 1)], ['o9_01955', (0, 1)], ['o9_01955', (1, 1)], ['o9_02255', (0, 1)], ['o9_02255', (1, 1)], ['o9_02340', (-1, 1)], ['o9_02340', (1, 0)], ['o9_02350', (0, 1)], ['o9_02350', (1, 1)], ['o9_02386', (-1, 1)], ['o9_02386', (1, 0)], ['o9_02655', (-1, 1)], ['o9_02655', (0, 1)], ['o9_02696', (-1, 1)], ['o9_02696', (0, 1)], ['o9_02706', (-1, 1)], ['o9_02706', (1, 0)], ['o9_02735', (1, 0)], ['o9_02735', (1, 1)], ['o9_02772', (-1, 1)], ['o9_02772', (0, 1)], ['o9_02786', (-2, 1)], ['o9_02786', (-1, 1)], ['o9_02794', (0, 1)], ['o9_02794', (1, 1)], ['o9_03032', (-1, 1)], ['o9_03032', (0, 1)], ['o9_03108', (-1, 1)], ['o9_03108', (0, 1)], ['o9_03118', (-1, 1)], ['o9_03118', (1, 0)], ['o9_03133', (0, 1)], ['o9_03133', (1, 1)], ['o9_03149', (1, 0)], ['o9_03149', (1, 1)], ['o9_03162', (0, 1)], ['o9_03162', (1, 1)], ['o9_03188', (0, 1)], ['o9_03188', (1, 1)], ['o9_03288', (1, 0)], ['o9_03288', (1, 1)], ['o9_03313', (0, 1)], ['o9_03313', (1, 1)], ['o9_03412', (1, 0)], ['o9_03412', (1, 1)], ['o9_03526', (-1, 1)], ['o9_03526', (1, 0)], ['o9_03586', (-1, 1)], ['o9_03586', (0, 1)], ['o9_03622', (-1, 1)], ['o9_03622', (0, 1)], ['o9_03802', (-1, 1)], ['o9_03802', (0, 1)], ['o9_03833', (-1, 1)], ['o9_03833', (0, 1)], ['o9_03932', (1, 0)], ['o9_03932', (1, 1)], ['o9_04106', (0, 1)], ['o9_04106', (1, 1)], ['o9_04205', (0, 1)], ['o9_04205', (1, 1)], ['o9_04245', (-1, 1)], ['o9_04245', (0, 1)], ['o9_04269', (-2, 1)], ['o9_04269', (-1, 1)], ['o9_04313', (1, 0)], ['o9_04313', (1, 1)], ['o9_04431', (1, 0)], ['o9_04431', (1, 1)], ['o9_04435', (1, 0)], ['o9_04435', (1, 1)], ['o9_04438', (-1, 1)], ['o9_04438', (0, 1)], ['o9_05021', (-1, 1)], ['o9_05021', (0, 1)], ['o9_05177', (-1, 1)], ['o9_05177', (0, 1)], ['o9_05229', (-1, 1)], ['o9_05229', (0, 1)], ['o9_05357', (-1, 1)], ['o9_05357', (0, 1)], ['o9_05426', (-1, 1)], ['o9_05426', (0, 1)], ['o9_05483', (-1, 1)], ['o9_05483', (0, 1)], ['o9_05562', (-1, 1)], ['o9_05562', (0, 1)], ['o9_05618', (-1, 1)], ['o9_05618', (0, 1)], ['o9_05860', (-1, 1)], ['o9_05860', (0, 1)], ['o9_05970', (-1, 1)], ['o9_05970', (0, 1)], ['o9_06060', (0, 1)], ['o9_06060', (1, 1)], ['o9_06128', (-1, 1)], ['o9_06128', (0, 1)], ['o9_06154', (0, 1)], ['o9_06154', (1, 1)], ['o9_06248', (-1, 1)], ['o9_06248', (0, 1)], ['o9_06301', (-1, 1)], ['o9_06301', (0, 1)], ['o9_07790', (-1, 1)], ['o9_07790', (0, 1)], ['o9_07893', (-1, 1)], ['o9_07893', (0, 1)], ['o9_07943', (0, 1)], ['o9_07943', (1, 0)], ['o9_07945', (-1, 1)], ['o9_07945', (0, 1)], ['o9_08006', (-1, 1)], ['o9_08006', (0, 1)], ['o9_08042', (0, 1)], ['o9_08042', (1, 0)], ['o9_08224', (1, 1)], ['o9_08224', (2, 1)], ['o9_08302', (1, 1)], ['o9_08302', (2, 1)], ['o9_08477', (0, 1)], ['o9_08477', (1, 1)], ['o9_08647', (1, 0)], ['o9_08647', (1, 1)], ['o9_08765', (-2, 1)], ['o9_08765', (-1, 1)], ['o9_08771', (1, 0)], ['o9_08771', (1, 1)], ['o9_08776', (0, 1)], ['o9_08776', (1, 0)], ['o9_08828', (-1, 1)], ['o9_08828', (0, 1)], ['o9_08831', (-2, 1)], ['o9_08831', (-1, 1)], ['o9_08852', (0, 1)], ['o9_08852', (1, 0)], ['o9_08875', (-1, 1)], ['o9_08875', (0, 1)], ['o9_09213', (0, 1)], ['o9_09213', (1, 1)], ['o9_09465', (-1, 1)], ['o9_09465', (0, 1)], ['o9_09808', (-1, 1)], ['o9_09808', (0, 1)], ['o9_10696', (0, 1)], ['o9_10696', (1, 0)], ['o9_11248', (1, 0)], ['o9_11248', (1, 1)], ['o9_11467', (0, 1)], ['o9_11467', (1, 0)], ['o9_11560', (0, 1)], ['o9_11560', (1, 0)], ['o9_11570', (0, 1)], ['o9_11570', (1, 1)], ['o9_11685', (1, 1)], ['o9_11685', (2, 1)], ['o9_11795', (-2, 1)], ['o9_11795', (-1, 1)], ['o9_11845', (-2, 1)], ['o9_11845', (-1, 1)], ['o9_11999', (1, 0)], ['o9_11999', (1, 1)], ['o9_12144', (0, 1)], ['o9_12144', (1, 0)], ['o9_12230', (0, 1)], ['o9_12230', (1, 0)], ['o9_12412', (1, 1)], ['o9_12412', (2, 1)], ['o9_12459', (-1, 1)], ['o9_12459', (1, 0)], ['o9_12519', (-1, 1)], ['o9_12519', (0, 1)], ['o9_12693', (-1, 1)], ['o9_12693', (0, 1)], ['o9_12736', (0, 1)], ['o9_12736', (1, 0)], ['o9_12757', (-1, 1)], ['o9_12757', (0, 1)], ['o9_12873', (-1, 1)], ['o9_12873', (0, 1)], ['o9_12892', (-2, 1)], ['o9_12892', (-1, 1)], ['o9_12919', (-2, 1)], ['o9_12919', (-1, 1)], ['o9_12971', (-1, 1)], ['o9_12971', (0, 1)], ['o9_13052', (-1, 1)], ['o9_13052', (1, 0)], ['o9_13056', (0, 1)], ['o9_13056', (1, 0)], ['o9_13125', (1, 0)], ['o9_13125', (1, 1)], ['o9_13182', (-2, 1)], ['o9_13182', (-1, 1)], ['o9_13188', (-1, 1)], ['o9_13188', (0, 1)], ['o9_13400', (-1, 1)], ['o9_13400', (0, 1)], ['o9_13403', (-2, 1)], ['o9_13403', (-1, 1)], ['o9_13433', (0, 1)], ['o9_13433', (1, 1)], ['o9_13508', (0, 1)], ['o9_13508', (1, 0)], ['o9_13537', (-2, 1)], ['o9_13537', (-1, 1)], ['o9_13604', (-1, 1)], ['o9_13604', (0, 1)], ['o9_13639', (0, 1)], ['o9_13639', (1, 1)], ['o9_13649', (1, 1)], ['o9_13649', (2, 1)], ['o9_13666', (1, 0)], ['o9_13666', (1, 1)], ['o9_13720', (0, 1)], ['o9_13720', (1, 1)], ['o9_13952', (0, 1)], ['o9_13952', (1, 1)], ['o9_14018', (0, 1)], ['o9_14018', (1, 0)], ['o9_14079', (-1, 1)], ['o9_14079', (0, 1)], ['o9_14136', (0, 1)], ['o9_14136', (1, 0)], ['o9_14364', (-2, 1)], ['o9_14364', (-1, 1)], ['o9_14376', (0, 1)], ['o9_14376', (1, 1)], ['o9_14495', (-2, 1)], ['o9_14495', (-1, 1)], ['o9_14599', (-1, 1)], ['o9_14599', (0, 1)], ['o9_14716', (-1, 1)], ['o9_14716', (0, 1)], ['o9_14831', (-1, 1)], ['o9_14831', (0, 1)], ['o9_14974', (0, 1)], ['o9_14974', (1, 1)], ['o9_15506', (1, 1)], ['o9_15506', (2, 1)], ['o9_15633', (0, 1)], ['o9_15633', (1, 1)], ['o9_15997', (-1, 1)], ['o9_15997', (0, 1)], ['o9_16065', (-1, 1)], ['o9_16065', (0, 1)], ['o9_16141', (-1, 1)], ['o9_16141', (0, 1)], ['o9_16157', (-1, 1)], ['o9_16157', (0, 1)], ['o9_16181', (0, 1)], ['o9_16181', (1, 1)], ['o9_16319', (-1, 1)], ['o9_16319', (0, 1)], ['o9_16356', (0, 1)], ['o9_16356', (1, 1)], ['o9_16527', (0, 1)], ['o9_16527', (1, 1)], ['o9_16642', (-1, 1)], ['o9_16642', (0, 1)], ['o9_16748', (-1, 1)], ['o9_16748', (0, 1)], ['o9_16920', (-1, 1)], ['o9_16920', (0, 1)], ['o9_17450', (-2, 1)], ['o9_17450', (-1, 1)], ['o9_18007', (-1, 1)], ['o9_18007', (0, 1)], ['o9_18209', (0, 1)], ['o9_18209', (1, 1)], ['o9_18633', (-2, 1)], ['o9_18633', (-1, 1)], ['o9_18813', (0, 1)], ['o9_18813', (1, 1)], ['o9_19130', (0, 1)], ['o9_19130', (1, 1)], ['o9_20219', (-1, 1)], ['o9_20219', (0, 1)], ['o9_21893', (-1, 1)], ['o9_21893', (1, 0)], ['o9_21918', (-1, 1)], ['o9_21918', (0, 1)], ['o9_22129', (-1, 1)], ['o9_22129', (0, 1)], ['o9_22477', (-1, 1)], ['o9_22477', (0, 1)], ['o9_22607', (0, 1)], ['o9_22607', (1, 1)], ['o9_22663', (-1, 1)], ['o9_22663', (0, 1)], ['o9_22698', (0, 1)], ['o9_22698', (1, 1)], ['o9_22925', (-1, 1)], ['o9_22925', (0, 1)], ['o9_23023', (0, 1)], ['o9_23023', (1, 1)], ['o9_23263', (0, 1)], ['o9_23263', (1, 1)], ['o9_23660', (0, 1)], ['o9_23660', (1, 1)], ['o9_23955', (-1, 1)], ['o9_23955', (0, 1)], ['o9_23961', (0, 1)], ['o9_23961', (1, 1)], ['o9_23977', (0, 1)], ['o9_23977', (1, 1)], ['o9_24149', (-1, 1)], ['o9_24149', (0, 1)], ['o9_24183', (1, 0)], ['o9_24183', (1, 1)], ['o9_24534', (-1, 1)], ['o9_24534', (1, 0)], ['o9_24592', (-1, 1)], ['o9_24592', (0, 1)], ['o9_24886', (-1, 1)], ['o9_24886', (0, 1)], ['o9_24889', (0, 1)], ['o9_24889', (1, 1)], ['o9_25595', (-1, 1)], ['o9_25595', (0, 1)], ['o9_26604', (0, 1)], ['o9_26604', (1, 1)], ['o9_26791', (-1, 1)], ['o9_26791', (0, 1)], ['o9_27155', (0, 1)], ['o9_27155', (1, 1)], ['o9_27261', (-1, 1)], ['o9_27261', (0, 1)], ['o9_27392', (-1, 1)], ['o9_27392', (0, 1)], ['o9_27480', (0, 1)], ['o9_27480', (1, 1)], ['o9_27737', (0, 1)], ['o9_27737', (1, 1)], ['o9_28113', (0, 1)], ['o9_28113', (1, 1)], ['o9_28153', (0, 1)], ['o9_28153', (1, 1)], ['o9_28529', (-1, 1)], ['o9_28529', (1, 0)], ['o9_28592', (-1, 1)], ['o9_28592', (0, 1)], ['o9_28746', (-1, 1)], ['o9_28746', (0, 1)], ['o9_28810', (0, 1)], ['o9_28810', (1, 1)], ['o9_29246', (-1, 1)], ['o9_29246', (0, 1)], ['o9_29436', (0, 1)], ['o9_29436', (1, 1)], ['o9_29529', (0, 1)], ['o9_29529', (1, 1)], ['o9_30375', (0, 1)], ['o9_30375', (1, 1)], ['o9_30721', (0, 1)], ['o9_30721', (1, 1)], ['o9_30790', (0, 1)], ['o9_30790', (1, 1)], ['o9_31165', (0, 1)], ['o9_31165', (1, 1)], ['o9_32132', (0, 1)], ['o9_32257', (0, 1)], ['o9_32257', (1, 1)], ['o9_32588', (0, 1)], ['o9_33526', (-1, 1)], ['o9_33526', (0, 1)], ['o9_33585', (-1, 1)], ['o9_33585', (0, 1)], ['o9_34403', (-1, 1)], ['o9_34403', (0, 1)], ['o9_35320', (-1, 1)], ['o9_35320', (0, 1)], ['o9_35549', (0, 1)], ['o9_35549', (1, 1)], ['o9_35682', (0, 1)], ['o9_35682', (1, 1)], ['o9_35736', (0, 1)], ['o9_35736', (1, 1)], ['o9_35772', (-1, 1)], ['o9_35772', (0, 1)], ['o9_37754', (1, 1)], ['o9_37941', (-1, 1)], ['o9_37941', (0, 1)], ['o9_39394', (0, 1)], ['o9_39394', (1, 1)], ['o9_39451', (1, 1)], ['o9_40179', (0, 1)], ['o9_43001', (0, 1)], ['o9_43679', (0, 1)], ['o9_43953', (0, 1)], ['o9_44054', (0, 1)], ['s042', (0, 1)], ['s042', (1, 1)], ['s068', (-1, 1)], ['s068', (0, 1)], ['s086', (-1, 1)], ['s086', (0, 1)], ['s104', (-1, 1)], ['s104', (0, 1)], ['s114', (-1, 1)], ['s114', (0, 1)], ['s294', (-1, 1)], ['s294', (0, 1)], ['s301', (0, 1)], ['s301', (1, 1)], ['s308', (-1, 1)], ['s308', (0, 1)], ['s336', (-2, 1)], ['s336', (-1, 1)], ['s344', (1, 0)], ['s344', (1, 1)], ['s346', (0, 1)], ['s346', (1, 1)], ['s367', (0, 1)], ['s367', (1, 1)], ['s369', (-1, 1)], ['s369', (1, 0)], ['s407', (-1, 1)], ['s407', (0, 1)], ['s582', (-1, 1)], ['s582', (0, 1)], ['s665', (0, 1)], ['s665', (1, 1)], ['s684', (0, 1)], ['s684', (1, 1)], ['s769', (0, 1)], ['s769', (1, 0)], ['s800', (-1, 1)], ['s800', (0, 1)], ['t00110', (0, 1)], ['t00110', (1, 1)], ['t00146', (-1, 1)], ['t00146', (0, 1)], ['t00324', (-1, 1)], ['t00324', (0, 1)], ['t00423', (-1, 1)], ['t00423', (0, 1)], ['t00434', (0, 1)], ['t00434', (1, 1)], ['t00729', (-1, 1)], ['t00729', (0, 1)], ['t00787', (0, 1)], ['t00787', (1, 1)], ['t00826', (0, 1)], ['t00826', (1, 1)], ['t00855', (-1, 1)], ['t00855', (0, 1)], ['t00873', (1, 0)], ['t00873', (1, 1)], ['t00932', (-1, 1)], ['t00932', (1, 0)], ['t01033', (0, 1)], ['t01033', (1, 1)], ['t01037', (-1, 1)], ['t01037', (0, 1)], ['t01125', (0, 1)], ['t01125', (1, 1)], ['t01216', (1, 0)], ['t01216', (1, 1)], ['t01268', (0, 1)], ['t01268', (1, 1)], ['t01292', (1, 0)], ['t01292', (1, 1)], ['t01318', (0, 1)], ['t01318', (1, 1)], ['t01368', (0, 1)], ['t01368', (1, 1)], ['t01409', (1, 0)], ['t01409', (1, 1)], ['t01422', (-2, 1)], ['t01422', (-1, 1)], ['t01424', (-1, 1)], ['t01424', (1, 0)], ['t01440', (0, 1)], ['t01440', (1, 1)], ['t01598', (-1, 1)], ['t01598', (1, 0)], ['t01636', (0, 1)], ['t01636', (1, 1)], ['t01646', (-1, 1)], ['t01646', (1, 0)], ['t01690', (0, 1)], ['t01690', (1, 1)], ['t01757', (-1, 1)], ['t01757', (0, 1)], ['t01834', (-1, 1)], ['t01834', (0, 1)], ['t01850', (1, 0)], ['t01850', (1, 1)], ['t01863', (0, 1)], ['t01863', (1, 1)], ['t01949', (1, 0)], ['t01949', (1, 1)], ['t02099', (-2, 1)], ['t02099', (-1, 1)], ['t02104', (-1, 1)], ['t02104', (0, 1)], ['t02238', (-1, 1)], ['t02238', (0, 1)], ['t02378', (-1, 1)], ['t02378', (0, 1)], ['t02398', (-1, 1)], ['t02398', (0, 1)], ['t02404', (-1, 1)], ['t02404', (0, 1)], ['t02470', (0, 1)], ['t02470', (1, 1)], ['t02537', (-1, 1)], ['t02537', (0, 1)], ['t02567', (-1, 1)], ['t02567', (0, 1)], ['t02639', (0, 1)], ['t02639', (1, 1)], ['t03566', (0, 1)], ['t03566', (1, 0)], ['t03607', (0, 1)], ['t03607', (1, 1)], ['t03709', (0, 1)], ['t03709', (1, 0)], ['t03713', (-2, 1)], ['t03713', (-1, 1)], ['t03781', (0, 1)], ['t03781', (1, 1)], ['t03864', (1, 1)], ['t03864', (2, 1)], ['t03956', (-2, 1)], ['t03956', (-1, 1)], ['t03979', (-1, 1)], ['t03979', (0, 1)], ['t04003', (-2, 1)], ['t04003', (-1, 1)], ['t04019', (-1, 1)], ['t04019', (0, 1)], ['t04102', (1, 1)], ['t04102', (2, 1)], ['t04180', (-1, 1)], ['t04180', (0, 1)], ['t04228', (0, 1)], ['t04228', (1, 0)], ['t04244', (1, 0)], ['t04244', (1, 1)], ['t04382', (0, 1)], ['t04382', (1, 1)], ['t04721', (1, 0)], ['t04721', (1, 1)], ['t05118', (-1, 1)], ['t05118', (0, 1)], ['t05239', (0, 1)], ['t05239', (1, 0)], ['t05390', (-2, 1)], ['t05390', (-1, 1)], ['t05425', (0, 1)], ['t05425', (1, 1)], ['t05426', (0, 1)], ['t05426', (1, 0)], ['t05538', (-1, 1)], ['t05538', (0, 1)], ['t05564', (-1, 1)], ['t05564', (0, 1)], ['t05578', (0, 1)], ['t05578', (1, 0)], ['t05658', (1, 0)], ['t05658', (1, 1)], ['t05663', (0, 1)], ['t05663', (1, 0)], ['t05674', (-1, 1)], ['t05674', (0, 1)], ['t05695', (-1, 1)], ['t05695', (0, 1)], ['t06001', (-1, 1)], ['t06001', (1, 0)], ['t06440', (-1, 1)], ['t06440', (0, 1)], ['t06463', (0, 1)], ['t06463', (1, 1)], ['t06525', (0, 1)], ['t06525', (1, 1)], ['t06570', (-1, 1)], ['t06570', (0, 1)], ['t06605', (0, 1)], ['t06605', (1, 1)], ['t07348', (-1, 1)], ['t07348', (0, 1)], ['t08111', (-1, 1)], ['t08111', (0, 1)], ['t08201', (0, 1)], ['t08201', (1, 1)], ['t08267', (0, 1)], ['t08267', (1, 1)], ['t08403', (-1, 1)], ['t08403', (0, 1)], ['t09016', (-1, 1)], ['t09016', (0, 1)], ['t09267', (0, 1)], ['t09267', (1, 1)], ['t09313', (0, 1)], ['t09313', (1, 1)], ['t09455', (-1, 1)], ['t09455', (0, 1)], ['t09580', (-1, 1)], ['t09580', (0, 1)], ['t09704', (-1, 1)], ['t09704', (0, 1)], ['t09852', (0, 1)], ['t09852', (1, 1)], ['t09954', (-1, 1)], ['t09954', (0, 1)], ['t10188', (0, 1)], ['t10230', (0, 1)], ['t10230', (1, 1)], ['t10462', (-1, 1)], ['t10462', (0, 1)], ['t10643', (0, 1)], ['t10643', (1, 1)], ['t10681', (-1, 1)], ['t10681', (0, 1)], ['t10985', (-1, 1)], ['t10985', (0, 1)], ['t11556', (-1, 1)], ['t11852', (0, 1)], ['t11852', (1, 1)], ['t12753', (0, 1)], ['v0082', (0, 1)], ['v0082', (1, 1)], ['v0114', (0, 1)], ['v0114', (1, 1)], ['v0165', (0, 1)], ['v0165', (1, 1)], ['v0220', (0, 1)], ['v0220', (1, 1)], ['v0223', (0, 1)], ['v0223', (1, 1)], ['v0330', (0, 1)], ['v0330', (1, 1)], ['v0398', (0, 1)], ['v0398', (1, 1)], ['v0407', (0, 1)], ['v0407', (1, 1)], ['v0424', (1, 0)], ['v0424', (1, 1)], ['v0434', (-1, 1)], ['v0434', (0, 1)], ['v0497', (1, 0)], ['v0497', (1, 1)], ['v0554', (0, 1)], ['v0554', (1, 1)], ['v0570', (0, 1)], ['v0570', (1, 1)], ['v0573', (-1, 1)], ['v0573', (0, 1)], ['v0707', (-2, 1)], ['v0707', (-1, 1)], ['v0709', (1, 0)], ['v0709', (1, 1)], ['v0715', (-1, 1)], ['v0715', (1, 0)], ['v0740', (0, 1)], ['v0740', (1, 1)], ['v0741', (1, 0)], ['v0741', (1, 1)], ['v0759', (-1, 1)], ['v0759', (0, 1)], ['v0765', (-1, 1)], ['v0765', (0, 1)], ['v0847', (-1, 1)], ['v0847', (1, 0)], ['v0912', (1, 0)], ['v0912', (1, 1)], ['v0939', (-1, 1)], ['v0939', (0, 1)], ['v0945', (0, 1)], ['v0945', (1, 1)], ['v1077', (0, 1)], ['v1077', (1, 1)], ['v1109', (-1, 1)], ['v1109', (0, 1)], ['v1300', (0, 1)], ['v1300', (1, 0)], ['v1392', (-2, 1)], ['v1392', (-1, 1)], ['v1547', (-2, 1)], ['v1547', (-1, 1)], ['v1620', (0, 1)], ['v1620', (1, 1)], ['v1628', (0, 1)], ['v1628', (1, 0)], ['v1690', (-2, 1)], ['v1690', (-1, 1)], ['v1709', (-1, 1)], ['v1709', (0, 1)], ['v1716', (1, 1)], ['v1716', (2, 1)], ['v1718', (-1, 1)], ['v1718', (0, 1)], ['v1728', (1, 1)], ['v1728', (2, 1)], ['v1810', (-1, 1)], ['v1810', (0, 1)], ['v1832', (0, 1)], ['v1832', (1, 1)], ['v1839', (-1, 1)], ['v1839', (0, 1)], ['v1921', (-1, 1)], ['v1921', (0, 1)], ['v1940', (0, 1)], ['v1940', (1, 0)], ['v1966', (0, 1)], ['v1966', (1, 0)], ['v1980', (-1, 1)], ['v1980', (0, 1)], ['v1986', (-1, 1)], ['v1986', (0, 1)], ['v2024', (0, 1)], ['v2024', (1, 1)], ['v2090', (-1, 1)], ['v2090', (0, 1)], ['v2215', (0, 1)], ['v2215', (1, 1)], ['v2325', (-1, 1)], ['v2325', (0, 1)], ['v2759', (0, 1)], ['v2759', (1, 1)], ['v2930', (-1, 1)], ['v2930', (0, 1)], ['v3354', (0, 1)], ['v3354', (1, 1)]]
In [10]:
len(possible_integer_slopes)
Out[10]:
774

Next we sort these 774 possible integer alternating slopes into slopes which are hyperbolic and those which are not.

In [11]:
def is_hyperbolic(knot,slope):
    '''
    Uses Dunfield's data to read off if a given slope is hyperbolic.
    '''
    exceptional_slopes_strings=exceptional_filllings.loc[(exceptional_filllings['cusped'] == knot)]['slope'].tolist()
    exceptional_slopes=[]
    for string in exceptional_slopes_strings:
        string_without_brackets=string[1:-1]
        exceptional_slopes.append(tuple(map(int, string_without_brackets.split(', '))))
    if slope in exceptional_slopes:
        return False
    else:
        return True

start_time = time.time()
possible_hyperbolic_slopes=[]
possible_non_hyperbolic_slopes=[]
for (knot,slope) in possible_integer_slopes:
    if is_hyperbolic(knot,slope)==True:
        possible_hyperbolic_slopes.append([knot,slope])
    else:
        possible_non_hyperbolic_slopes.append([knot,slope])
        
print("--- Time taken: %s seconds ---" % (time.time() - start_time))
--- Time taken: 6.542446613311768 seconds ---
In [12]:
len(possible_hyperbolic_slopes)
Out[12]:
59
In [13]:
len(possible_non_hyperbolic_slopes)
Out[13]:
715

First we handle the hyperbolic slopes. Here we just run through the HT link table take the double branched covers and search for a match.

In [14]:
def double_branched_cover(link):
    """
    Returns the double branched cover of the link.
    """
    L=link.copy()
    for i in range(L.num_cusps()):
        L.dehn_fill((2,0),i)
    for cov in L.covers(2):
        if (2.0, 0.0) not in cov.cusp_info('filling'):
            return cov

def better_is_isometric_to(X,Y,index):
    """
    Returns True if X and Y are isometric.
    Returns False if X and Y have different homologies. TO DO: Use volume to rigorously distinguish X and Y.
    Returns 'unclear' if SnapPy cannot verify it.
    The higher the index the harder SnapPy tries.
    """     
    w='unclear'
    if X.homology()!=Y.homology():
        w=False
    if w=='unclear':
        for i in (0,index):
            try:
                w=X.is_isometric_to(Y)
            except RuntimeError:
                pass
            except SnapPeaFatalError:
                pass
            if w==True:
                break
            if w==False:
                w='unclear'
            X.randomize()
            Y.randomize()
            i=i+1
    return w

def possible_DBC(homologies,max_crossings=15):
    """
    Takes a list of orders of homologies and returns a list consisting of all DBC of alternating links in the HT link table with that homologies together with the link names.
    """
    DBCList=[]
    LINKS=[]
    for order in homologies:
        LINKS=LINKS+DBChomologies.loc[(DBChomologies['homology']==order) & (DBChomologies['crossings']<=max_crossings)]['knot'].tolist()
    for link in LINKS:
        L=snappy.Manifold(link)
        D=double_branched_cover(L)
        DBCList.append([D,link])
    return DBCList

def is_alternating(knot,slope):
    K=snappy.Manifold(knot)
    K.dehn_fill(slope)
    DBC=possible_DBC([K.homology().order()],max_crossings=13) #13 crossings is sufficient by the result on the Goeritz matrices.
    for D in DBC:
        w=better_is_isometric_to(D[0],K,10)
        if w==True:
            return [[knot,slope,D[1]]]
    return False
In [15]:
start_time = time.time()
HYPERBOLIC_ALTERNATING_SLOPES=[]
UNCLEAR_HYPERBOLIC_SLOPES=[]
for (knot,slope) in possible_hyperbolic_slopes:
    w=is_alternating(knot,slope)
    if w==False:
        UNCLEAR_HYPERBOLIC_SLOPES.append([knot,slope])
    else:
        HYPERBOLIC_ALTERNATING_SLOPES=HYPERBOLIC_ALTERNATING_SLOPES+w
        
print("--- Time taken: %s seconds ---" % (time.time() - start_time))
--- Time taken: 30.411959886550903 seconds ---
In [16]:
print(UNCLEAR_HYPERBOLIC_SLOPES)
[]
In [17]:
HYPERBOLIC_ALTERNATING_SLOPES
Out[17]:
[['o9_08224', (2, 1), 'K12a1178'],
 ['o9_08302', (2, 1), 'L12a1298'],
 ['o9_08765', (-2, 1), 'L12a987'],
 ['o9_08831', (-2, 1), 'K12a977'],
 ['o9_11685', (2, 1), 'K12a1169'],
 ['o9_11795', (-2, 1), 'K12a952'],
 ['o9_11845', (-2, 1), 'K12a1238'],
 ['o9_12412', (2, 1), 'K12a660'],
 ['o9_12892', (-2, 1), 'L12a998'],
 ['o9_12919', (-2, 1), 'K12a1236'],
 ['o9_13182', (-2, 1), 'K12a1262'],
 ['o9_13403', (-2, 1), 'K12a262'],
 ['o9_13537', (-2, 1), 'L12a912'],
 ['o9_13649', (2, 1), 'L12a1313'],
 ['o9_14364', (-2, 1), 'K12a1047'],
 ['o9_14495', (-2, 1), 'K12a617'],
 ['o9_15506', (2, 1), 'K12a349'],
 ['o9_17450', (-2, 1), 'L12a821'],
 ['o9_18633', (-2, 1), 'K12a779'],
 ['o9_23977', (1, 1), 'K12a989'],
 ['o9_26791', (-1, 1), 'K12a321'],
 ['o9_27155', (1, 1), 'L12a923'],
 ['o9_27261', (-1, 1), 'K12a635'],
 ['o9_28153', (1, 1), 'L12a1133'],
 ['o9_28746', (-1, 1), 'L12a1097'],
 ['o9_28810', (1, 1), 'K12a403'],
 ['o9_30375', (1, 1), 'K12a284'],
 ['o9_32132', (0, 1), 'K10a45'],
 ['o9_32257', (1, 1), 'L11a313'],
 ['o9_32588', (0, 1), 'L10a106'],
 ['o9_33526', (-1, 1), 'K10a72'],
 ['o9_34403', (-1, 1), 'K11a137'],
 ['o9_35320', (0, 1), 'K11a312'],
 ['o9_35682', (1, 1), 'K11a295'],
 ['o9_35772', (-1, 1), 'K11a320'],
 ['o9_37754', (1, 1), 'L10a76'],
 ['o9_37941', (-1, 1), 'K11a115'],
 ['o9_39394', (1, 1), 'K11a217'],
 ['o9_39451', (1, 1), 'K10a99'],
 ['o9_43001', (0, 1), 'L10a71'],
 ['o9_43679', (0, 1), 'K11a227'],
 ['o9_43953', (0, 1), 'K11a304'],
 ['o9_44054', (0, 1), 'L11a229'],
 ['t03713', (-2, 1), 'L11a328'],
 ['t03864', (2, 1), 'K11a215'],
 ['t03956', (-2, 1), 'L11a377'],
 ['t04003', (-2, 1), 'K11a158'],
 ['t04102', (2, 1), 'L11a239'],
 ['t05390', (-2, 1), 'K11a296'],
 ['t09580', (-1, 1), 'K11a148'],
 ['t10230', (1, 1), 'K10a97'],
 ['t10462', (-1, 1), 'L11a321'],
 ['t11556', (-1, 1), 'L9a20'],
 ['t11852', (1, 1), 'K10a45'],
 ['v1392', (-2, 1), 'K10a119'],
 ['v1547', (-2, 1), 'L10a80'],
 ['v1690', (-2, 1), 'L10a106'],
 ['v1716', (2, 1), 'K10a98'],
 ['v1728', (2, 1), 'K10a95']]

Next, we Dunfield's data to search for lens space surgeries and alternating surgeries to small Seifert fibered spaces.

In [18]:
#########################################################################################
#################### CODE FOR SEARCHING LENS SPACE SURGERIES ############################ 
#########################################################################################

def has_lens_space_surgery(knot,all=False):
    """
    Searches for lens space surgeries along the knot. If there exists no lens space surgery it returns False. 
    Otherwise it returns a lens space surgery slope together with the corresponding lens space.
    If all=True it returns all lens space surgery slopes together with the lens spaces.
    """
    lens_space_surgeries=[]
    slopes=exceptional_filllings.loc[(exceptional_filllings['cusped'] == knot)]['slope'].tolist()
    kinds=exceptional_filllings.loc[(exceptional_filllings['cusped'] == knot)]['kind'].tolist()
    regina_names=exceptional_filllings.loc[(exceptional_filllings['cusped'] == knot)]['regina_name'].tolist()
    for i in range(0,len(kinds)):
        if kinds[i]=='lens_space':
            lens_space_surgeries.append([knot,slopes[i],regina_names[i]])
    if lens_space_surgeries==[]:
        return False
    if all:
        return lens_space_surgeries
    return [lens_space_surgeries[0]]

########################################################################################
#################### CODE FOR SEARCHING SFS SPACE SURGERIES ############################ 
########################################################################################

def read_off_invariants(regina_name):
    """
    Takes the regina_name of a small Seifert fibered space and returns a list with its Seifert invariants.
    For example: read_off_invariants('SFS [S2: (2,1) (3,1) (5,22)]') = [2, 1, 3, 1, 5, 22]
    """
    set=[]
    invariants=[]
    set.append([regina_name.split()[2],regina_name.split()[3],regina_name.split()[4][:-1]])
    for z in set[0]:
        y=z[1:-1]
        y=y.replace(',',' ')
        for n in y.split():
            invariants.append(int(n))
    return invariants

def branching_set_of_small_SFS(invariants):
    """
    Takes as input the Seifert invariants of a small Seifert fibered space and identify the branching set of its quotient under the Z2-action.
    Example: The Seifert fibered space (in Regina's notation) 'SFS [S2: (2,1) (3,1) (5,22)]') is the double branched cover over
    branching_set_of_small_SFS([2, 1, 3, 1, 5, 22]) = K13a666(0,0)
    """
    T= snappy.RationalTangle(invariants[0],invariants[1])*snappy.RationalTangle(invariants[2],invariants[3])*snappy.RationalTangle(invariants[4],invariants[5])
    L=T.denominator_closure()
    B=L.exterior()
    if B.identify()!=[]:
        return B.identify()[-1].name()
    else:
        return []

def has_SFS_surgery(knot,all=False,alternating=False):
    """
    Searches for (small Seifert fibered space) SFS surgeries along the knot. If there exists no SFS surgery it returns False. 
    Otherwise it returns a SFS space surgery slope together with the corresponding SFS and the branching set.
    If all=True it returns all SFS surgery slopes together with the SFS and the branching sets.
    If alternating is True it returns only SFS surgeries where SnapPy can confirm the branching set to be alternating (Warning: This might not be all).
    """
    SFS_surgeries=[]
    slopes=exceptional_filllings.loc[(exceptional_filllings['cusped'] == knot)]['slope'].tolist()
    kinds=exceptional_filllings.loc[(exceptional_filllings['cusped'] == knot)]['kind'].tolist()
    regina_names=exceptional_filllings.loc[(exceptional_filllings['cusped'] == knot)]['regina_name'].tolist()
    for i in range(0,len(kinds)):
        if kinds[i]=='finite' or kinds[i]=='seifert_ator':
            B=branching_set_of_small_SFS(read_off_invariants(regina_names[i]))
            SFS_surgeries.append([knot,slopes[i],regina_names[i],B])
    if alternating:
        SFS_surgeries=[]
        for i in range(0,len(kinds)):
            if kinds[i]=='finite' or kinds[i]=='seifert_ator':
                B=branching_set_of_small_SFS(read_off_invariants(regina_names[i]))
                if B!=[]:
                    if snappy.Manifold(B).link().is_alternating()==True:
                        SFS_surgeries.append([knot,slopes[i],regina_names[i],B])
    if SFS_surgeries==[]:
        return False
    if all:
        return SFS_surgeries
    return [SFS_surgeries[0]]


##################################################################################################################################
################################# Search for non hyperbolic alternating surgeries ################################################
##################################################################################################################################

### We combine the lens space and SFS search to a single function.

def has_non_hyperbolic_alternating_surgery(knot,return_complete_list=False):
    """
    Searches for non-hyperbolic alternating surgeries. 
    Warning: Does not find any alternating surgeries to graph manifolds.
    """
    alternating_surgeries=[]
    w=has_lens_space_surgery(knot,all=True)
    if w!=False:
        alternating_surgeries=alternating_surgeries+w
    w=has_SFS_surgery(knot,alternating=True,all=True)
    if w!=False:
        alternating_surgeries=alternating_surgeries+w
    alternating_surgeries.sort()
    if return_complete_list==False:
        if alternating_surgeries==[]:
            return alternating_surgeries
        return alternating_surgeries[0]
    return alternating_surgeries
In [19]:
start_time = time.time()
SEIFERT_FIBERED_ALTERNATING_SLOPES=[]
for (knot,slope) in possible_non_hyperbolic_slopes:
    ALT_strings=has_non_hyperbolic_alternating_surgery(knot,return_complete_list=True)
    ALT_slopes=[]
    for x in ALT_strings:
        string=x[1]
        string_without_brackets=string[1:-1]
        if len(x)==3:
            ALT_slopes.append([x[0],tuple(map(int, string_without_brackets.split(', '))),x[2]])
        if len(x)==4:
            ALT_slopes.append([x[0],tuple(map(int, string_without_brackets.split(', '))),x[2],x[3]])
    SEIFERT_FIBERED_ALTERNATING_SLOPES=SEIFERT_FIBERED_ALTERNATING_SLOPES+[x for x in ALT_slopes if x[1]==slope] 

UNCLEAR_NON_HYPERBOLIC_SLOPES=[x for x in possible_non_hyperbolic_slopes if x not in [[x[0],x[1]] for x in SEIFERT_FIBERED_ALTERNATING_SLOPES]]

print("--- Time taken: %s seconds ---" % (time.time() - start_time))
--- Time taken: 245.3493902683258 seconds ---
In [20]:
len(SEIFERT_FIBERED_ALTERNATING_SLOPES)
Out[20]:
531
In [21]:
SEIFERT_FIBERED_ALTERNATING_SLOPES
Out[21]:
[['m016', (-1, 1), 'L(19,7)'],
 ['m016', (0, 1), 'L(18,5)'],
 ['m071', (-1, 1), 'L(31,11)'],
 ['m071', (0, 1), 'L(32,7)'],
 ['m082', (0, 1), 'L(27,8)'],
 ['m082', (1, 1), 'SFS [S2: (2,1) (2,1) (5,2)]', 'L8a3'],
 ['m103', (-1, 1), 'SFS [S2: (2,1) (2,1) (3,8)]', 'L9a16'],
 ['m103', (0, 1), 'L(43,12)'],
 ['m118', (-1, 1), 'L(30,11)'],
 ['m118', (0, 1), 'L(31,12)'],
 ['m144', (-1, 1), 'SFS [S2: (2,1) (3,1) (5,2)]', 'K9a9'],
 ['m144', (0, 1), 'L(36,11)'],
 ['m194', (0, 1), 'L(37,10)'],
 ['m194', (1, 1), 'SFS [S2: (2,1) (2,1) (7,2)]', 'L9a7'],
 ['m198', (0, 1), 'SFS [S2: (2,1) (3,1) (4,3)]', 'L9a24'],
 ['m198', (1, 1), 'L(39,16)'],
 ['m239', (0, 1), 'L(34,13)'],
 ['m240', (-1, 1), 'SFS [S2: (2,1) (2,1) (5,4)]', 'L9a12'],
 ['m240', (1, 0), 'L(37,10)'],
 ['m270', (1, 0), 'L(45,19)'],
 ['m270', (1, 1), 'SFS [S2: (2,1) (3,2) (4,3)]', 'L9a23'],
 ['m276', (1, 0), 'L(50,19)'],
 ['m276', (1, 1), 'SFS [S2: (2,1) (3,2) (3,5)]', 'K9a5'],
 ['m281', (0, 1), 'SFS [S2: (2,1) (3,2) (5,2)]', 'K9a4'],
 ['m281', (1, 1), 'L(46,17)'],
 ['o9_00133', (-1, 1), 'SFS [S2: (2,1) (3,2) (5,16)]', 'K13a633'],
 ['o9_00133', (0, 1), 'L(132,25)'],
 ['o9_00168', (0, 1), 'L(143,25)'],
 ['o9_00168', (1, 1), 'SFS [S2: (2,1) (3,2) (6,17)]', 'L13a2992'],
 ['o9_00644', (-1, 1), 'SFS [S2: (2,1) (5,2) (7,1)]', 'K13a646'],
 ['o9_00644', (0, 1), 'L(72,23)'],
 ['o9_00797', (-1, 1), 'L(215,49)'],
 ['o9_00797', (0, 1), 'L(214,49)'],
 ['o9_00815', (-1, 1), 'L(226,49)'],
 ['o9_00815', (0, 1), 'L(227,49)'],
 ['o9_01436', (0, 1), 'SFS [S2: (2,1) (3,1) (16,13)]', 'L13a4220'],
 ['o9_01436', (1, 1), 'SFS [S2: (2,1) (3,1) (5,22)]', 'K13a666'],
 ['o9_01496', (-1, 1), 'SFS [S2: (2,1) (4,3) (5,17)]', 'L13a1884'],
 ['o9_01496', (0, 1), 'SFS [S2: (2,1) (3,1) (19,15)]', 'K13a3215'],
 ['o9_01584', (0, 1), 'L(219,64)'],
 ['o9_01621', (0, 1), 'L(229,64)'],
 ['o9_01680', (1, 0), 'L(211,64)'],
 ['o9_01680', (1, 1), 'SFS [S2: (2,1) (4,3) (13,10)]', 'L13a2083'],
 ['o9_01765', (-1, 1), 'SFS [S2: (2,1) (4,3) (15,11)]', 'L13a1850'],
 ['o9_01765', (1, 0), 'L(237,64)'],
 ['o9_01953', (0, 1), 'SFS [S2: (3,1) (4,3) (5,6)]', 'K13a4562'],
 ['o9_01953', (1, 1), 'SFS [S2: (2,1) (6,5) (7,2)]', 'L13a2843'],
 ['o9_01955', (0, 1), 'SFS [S2: (3,1) (4,3) (6,5)]', 'L13a4298'],
 ['o9_01955', (1, 1), 'SFS [S2: (2,1) (5,1) (7,9)]', 'K13a1536'],
 ['o9_02255', (0, 1), 'L(227,84)'],
 ['o9_02255', (1, 1), 'SFS [S2: (2,1) (2,1) (41,16)]', 'L13a597'],
 ['o9_02340', (-1, 1), 'SFS [S2: (2,1) (2,1) (33,26)]', 'L13a957'],
 ['o9_02340', (1, 0), 'L(237,64)'],
 ['o9_02350', (0, 1), 'L(273,100)'],
 ['o9_02350', (1, 1), 'SFS [S2: (2,1) (2,1) (49,19)]', 'L13a949'],
 ['o9_02386', (-1, 1), 'SFS [S2: (2,1) (2,1) (37,29)]', 'L13a500'],
 ['o9_02386', (1, 0), 'L(263,71)'],
 ['o9_02655', (0, 1), 'L(196,75)'],
 ['o9_02696', (0, 1), 'L(209,80)'],
 ['o9_02706', (-1, 1), 'SFS [S2: (3,2) (3,2) (10,17)]', 'K13a2041'],
 ['o9_02706', (1, 0), 'L(274,81)'],
 ['o9_02735', (1, 0), 'L(293,81)'],
 ['o9_02735', (1, 1), 'SFS [S2: (3,2) (3,2) (11,18)]', 'L13a4183'],
 ['o9_02772', (-1, 1), 'L(95,41)'],
 ['o9_02772', (0, 1), 'SFS [S2: (3,1) (3,1) (7,6)]', 'L13a5041'],
 ['o9_02786', (-1, 1), 'L(98,37)'],
 ['o9_02794', (0, 1), 'SFS [S2: (3,2) (5,2) (6,1)]', 'K13a2427'],
 ['o9_02794', (1, 1), 'L(110,41)'],
 ['o9_03032', (-1, 1), 'SFS [S2: (2,1) (2,1) (7,30)]', 'L13a1210'],
 ['o9_03032', (0, 1), 'SFS [S2: (3,1) (3,1) (11,9)]', 'K13a3004'],
 ['o9_03108', (-1, 1), 'L(103,46)'],
 ['o9_03108', (0, 1), 'SFS [S2: (3,1) (4,1) (6,5)]', 'L13a4297'],
 ['o9_03118', (-1, 1), 'SFS [S2: (2,1) (3,2) (17,29)]', 'K13a299'],
 ['o9_03118', (1, 0), 'L(292,111)'],
 ['o9_03133', (0, 1), 'L(157,36)'],
 ['o9_03149', (1, 0), 'L(313,119)'],
 ['o9_03149', (1, 1), 'SFS [S2: (2,1) (3,2) (18,31)]', 'L13a2812'],
 ['o9_03162', (0, 1), 'L(288,119)'],
 ['o9_03162', (1, 1), 'SFS [S2: (2,1) (3,2) (31,12)]', 'K13a296'],
 ['o9_03188', (0, 1), 'L(317,121)'],
 ['o9_03188', (1, 1), 'SFS [S2: (2,1) (3,2) (34,13)]', 'L13a2823'],
 ['o9_03288', (1, 0), 'L(158,37)'],
 ['o9_03288', (1, 1), 'SFS [S2: (2,1) (5,4) (9,4)]', 'K13a3453'],
 ['o9_03313', (0, 1), 'L(206,63)'],
 ['o9_03412', (1, 0), 'L(205,61)'],
 ['o9_03412', (1, 1), 'SFS [S2: (2,1) (5,4) (12,5)]', 'L13a2528'],
 ['o9_03526', (-1, 1), 'SFS [S2: (2,1) (4,1) (7,6)]', 'L13a2127'],
 ['o9_03526', (1, 0), 'L(91,16)'],
 ['o9_03586', (-1, 1), 'SFS [S2: (2,1) (3,1) (9,20)]', 'K13a1584'],
 ['o9_03586', (0, 1), 'SFS [S2: (3,1) (5,4) (7,3)]', 'L13a5059'],
 ['o9_03622', (-1, 1), 'SFS [S2: (2,1) (4,3) (9,11)]', 'L13a1604'],
 ['o9_03622', (0, 1), 'SFS [S2: (3,1) (5,4) (7,4)]', 'K13a4311'],
 ['o9_03802', (0, 1), 'L(151,45)'],
 ['o9_03833', (-1, 1), 'SFS [S2: (2,1) (2,1) (11,24)]', 'L13a768'],
 ['o9_03833', (0, 1), 'SFS [S2: (3,1) (5,2) (6,5)]', 'K13a2317'],
 ['o9_03932', (1, 0), 'L(135,31)'],
 ['o9_03932', (1, 1), 'SFS [S2: (2,1) (6,5) (7,2)]', 'L13a2843'],
 ['o9_04106', (0, 1), 'SFS [S2: (3,1) (3,2) (13,10)]', 'K13a2807'],
 ['o9_04205', (0, 1), 'SFS [S2: (3,1) (3,2) (14,11)]', 'K13a2110'],
 ['o9_04245', (0, 1), 'SFS [S2: (2,1) (3,1) (15,26)]', 'K13a2857'],
 ['o9_04269', (-1, 1), 'SFS [S2: (2,1) (4,1) (11,7)]', 'L12a634'],
 ['o9_04313', (1, 0), 'L(240,71)'],
 ['o9_04313', (1, 1), 'SFS [S2: (3,2) (4,3) (7,10)]', 'K13a1458'],
 ['o9_04431', (1, 0), 'L(267,79)'],
 ['o9_04431', (1, 1), 'SFS [S2: (3,2) (4,3) (8,11)]', 'L13a3104'],
 ['o9_04435', (1, 0), 'L(162,35)'],
 ['o9_04435', (1, 1), 'SFS [S2: (3,2) (4,1) (5,9)]', 'K13a1220'],
 ['o9_04438', (0, 1), 'SFS [S2: (2,1) (3,1) (18,31)]', 'L13a2960'],
 ['o9_05021', (0, 1), 'SFS [S2: (3,1) (3,1) (7,19)]', 'K13a2832'],
 ['o9_05177', (0, 1), 'SFS [S2: (3,1) (4,3) (7,12)]', 'K13a1941'],
 ['o9_05229', (0, 1), 'SFS [S2: (3,1) (4,3) (9,7)]', 'K13a2122'],
 ['o9_05357', (0, 1), 'SFS [S2: (2,1) (3,1) (10,27)]', 'L13a2981'],
 ['o9_05426', (-1, 1), 'SFS [S2: (2,1) (5,4) (13,5)]', 'K13a817'],
 ['o9_05426', (0, 1), 'SFS [S2: (3,2) (4,1) (8,11)]', 'L13a3443'],
 ['o9_05483', (-1, 1), 'SFS [S2: (2,1) (4,1) (13,18)]', 'L13a2133'],
 ['o9_05483', (0, 1), 'SFS [S2: (3,2) (5,4) (8,3)]', 'K13a1432'],
 ['o9_05562', (0, 1), 'SFS [S2: (3,1) (3,1) (11,19)]', 'K13a2841'],
 ['o9_05618', (0, 1), 'SFS [S2: (3,1) (5,3) (9,7)]', 'K13a2002'],
 ['o9_05860', (-1, 1), 'SFS [S2: (2,1) (5,2) (18,7)]', 'L13a2837'],
 ['o9_05860', (0, 1), 'SFS [S2: (2,1) (3,2) (11,26)]', 'K13a523'],
 ['o9_05970', (0, 1), 'SFS [S2: (3,1) (3,2) (11,19)]', 'L13a4371'],
 ['o9_06060', (0, 1), 'SFS [S2: (2,1) (2,1) (19,31)]', 'L12a226'],
 ['o9_06128', (-1, 1), 'SFS [S2: (2,1) (5,3) (18,7)]', 'L13a2838'],
 ['o9_06128', (0, 1), 'SFS [S2: (3,2) (3,2) (11,15)]', 'K13a1818'],
 ['o9_06154', (0, 1), 'SFS [S2: (2,1) (3,2) (19,12)]', 'K12a83'],
 ['o9_06248', (-1, 1), 'SFS [S2: (2,1) (2,1) (21,50)]', 'L13a1153'],
 ['o9_06248', (0, 1), 'SFS [S2: (3,2) (5,2) (13,5)]', 'K13a788'],
 ['o9_06301', (-1, 1), 'SFS [S2: (2,1) (3,2) (21,29)]', 'K13a332'],
 ['o9_06301', (0, 1), 'SFS [S2: (3,2) (5,3) (13,5)]', 'L13a4461'],
 ['o9_07790', (-1, 1), 'SFS [S2: (2,1) (6,5) (7,3)]', 'L13a2991'],
 ['o9_07790', (0, 1), 'SFS [S2: (2,1) (5,2) (11,5)]', 'K13a653'],
 ['o9_07893', (0, 1), 'L(199,55)'],
 ['o9_07943', (0, 1), 'SFS [S2: (3,1) (3,1) (4,15)]', 'K13a4569'],
 ['o9_07943', (1, 0), 'SFS [S2: (2,1) (5,4) (10,3)]', 'L13a2937'],
 ['o9_07945', (0, 1), 'L(233,89)'],
 ['o9_08006', (-1, 1), 'SFS [S2: (2,1) (7,3) (9,7)]', 'K13a1044'],
 ['o9_08006', (0, 1), 'SFS [S2: (2,1) (5,2) (16,7)]', 'L13a2240'],
 ['o9_08042', (0, 1), 'SFS [S2: (3,1) (4,3) (4,11)]', 'L13a3474'],
 ['o9_08042', (1, 0), 'SFS [S2: (2,1) (5,4) (11,4)]', 'K13a3452'],
 ['o9_08224', (1, 1), 'SFS [S2: (3,1) (3,2) (5,13)]', 'L12a1239'],
 ['o9_08302', (1, 1), 'SFS [S2: (3,2) (4,3) (5,8)]', 'K12a219'],
 ['o9_08477', (0, 1), 'SFS [S2: (3,1) (5,1) (7,3)]', 'K13a4871'],
 ['o9_08477', (1, 1), 'SFS [S2: (2,1) (2,1) (21,4)]', 'L13a699'],
 ['o9_08647', (1, 0), 'L(271,75)'],
 ['o9_08765', (-1, 1), 'SFS [S2: (2,1) (3,1) (11,19)]', 'K12a258'],
 ['o9_08771', (1, 0), 'L(317,121)'],
 ['o9_08776', (0, 1), 'SFS [S2: (3,2) (4,3) (11,7)]', 'K13a1209'],
 ['o9_08776', (1, 0), 'SFS [S2: (2,1) (2,1) (25,43)]', 'L13a1062'],
 ['o9_08828', (0, 1), 'L(239,70)'],
 ['o9_08831', (-1, 1), 'SFS [S2: (2,1) (4,3) (11,8)]', 'L12a595'],
 ['o9_08852', (0, 1), 'SFS [S2: (3,2) (4,3) (13,8)]', 'K13a1205'],
 ['o9_08852', (1, 0), 'SFS [S2: (2,1) (2,1) (29,50)]', 'L13a996'],
 ['o9_08875', (0, 1), 'L(268,99)'],
 ['o9_09213', (0, 1), 'L(150,59)'],
 ['o9_09465', (-1, 1), 'SFS [S2: (3,2) (5,2) (5,9)]', 'K13a1850'],
 ['o9_09465', (0, 1), 'SFS [S2: (2,1) (5,2) (14,9)]', 'L13a2859'],
 ['o9_09808', (-1, 1), 'SFS [S2: (3,2) (5,2) (7,12)]', 'L13a3286'],
 ['o9_09808', (0, 1), 'SFS [S2: (2,1) (5,2) (19,12)]', 'K13a565'],
 ['o9_10696', (0, 1), 'SFS [S2: (3,1) (4,1) (6,5)]', 'L13a4297'],
 ['o9_10696', (1, 0), 'L(101,21)'],
 ['o9_11248', (1, 0), 'SFS [S2: (2,1) (7,3) (10,3)]', 'L13a2940'],
 ['o9_11248', (1, 1), 'SFS [S2: (2,1) (7,3) (9,4)]', 'K13a3593'],
 ['o9_11467', (0, 1), 'SFS [S2: (3,2) (4,3) (12,7)]', 'L13a3188'],
 ['o9_11467', (1, 0), 'SFS [S2: (2,1) (7,5) (7,12)]', 'K13a809'],
 ['o9_11560', (0, 1), 'SFS [S2: (3,2) (4,3) (13,8)]', 'K13a1205'],
 ['o9_11560', (1, 0), 'SFS [S2: (2,1) (7,5) (8,13)]', 'L13a1896'],
 ['o9_11570', (0, 1), 'SFS [S2: (3,1) (5,2) (9,4)]', 'K13a2804'],
 ['o9_11570', (1, 1), 'SFS [S2: (2,1) (5,4) (10,3)]', 'L13a2937'],
 ['o9_11685', (1, 1), 'SFS [S2: (2,1) (3,1) (14,11)]', 'L12a872'],
 ['o9_11795', (-1, 1), 'SFS [S2: (2,1) (2,1) (17,14)]', 'L12a326'],
 ['o9_11845', (-1, 1), 'SFS [S2: (3,1) (5,3) (5,4)]', 'L12a1323'],
 ['o9_11999', (1, 0), 'L(253,74)'],
 ['o9_12144', (0, 1), 'SFS [S2: (3,1) (4,3) (7,10)]', 'K13a4563'],
 ['o9_12144', (1, 0), 'SFS [S2: (2,1) (4,3) (13,10)]', 'L13a2083'],
 ['o9_12230', (0, 1), 'SFS [S2: (4,3) (4,3) (7,4)]', 'L13a3468'],
 ['o9_12230', (1, 0), 'SFS [S2: (2,1) (3,1) (15,26)]', 'K13a2857'],
 ['o9_12412', (1, 1), 'SFS [S2: (2,1) (3,2) (14,11)]', 'L12a870'],
 ['o9_12459', (1, 0), 'L(148,41)'],
 ['o9_12519', (0, 1), 'L(130,51)'],
 ['o9_12693', (-1, 1), 'SFS [S2: (2,1) (3,1) (16,5)]', 'L13a4353'],
 ['o9_12693', (0, 1), 'SFS [S2: (3,1) (4,1) (9,4)]', 'K13a4273'],
 ['o9_12736', (0, 1), 'SFS [S2: (3,1) (3,2) (11,9)]', 'L13a3633'],
 ['o9_12736', (1, 0), 'SFS [S2: (2,1) (5,4) (7,9)]', 'K13a1390'],
 ['o9_12757', (0, 1), 'L(145,59)'],
 ['o9_12873', (0, 1), 'L(261,100)'],
 ['o9_12892', (-1, 1), 'SFS [S2: (3,1) (3,2) (7,12)]', 'K12a524'],
 ['o9_12919', (-1, 1), 'SFS [S2: (4,3) (4,3) (5,3)]', 'L12a962'],
 ['o9_12971', (0, 1), 'L(153,55)'],
 ['o9_13052', (1, 0), 'L(172,39)'],
 ['o9_13056', (0, 1), 'SFS [S2: (3,2) (5,4) (8,3)]', 'K13a1432'],
 ['o9_13056', (1, 0), 'SFS [S2: (2,1) (3,1) (14,25)]', 'L13a2954'],
 ['o9_13125', (1, 0), 'L(177,49)'],
 ['o9_13182', (-1, 1), 'SFS [S2: (2,1) (4,3) (9,7)]', 'L12a492'],
 ['o9_13188', (0, 1), 'L(171,53)'],
 ['o9_13400', (-1, 1), 'SFS [S2: (3,1) (5,2) (5,9)]', 'L13a4477'],
 ['o9_13400', (0, 1), 'SFS [S2: (2,1) (7,4) (9,4)]', 'K13a3456'],
 ['o9_13403', (-1, 1), 'SFS [S2: (3,2) (3,2) (7,12)]', 'L12a932'],
 ['o9_13433', (0, 1), 'L(209,80)'],
 ['o9_13508', (0, 1), 'SFS [S2: (4,3) (4,3) (5,7)]', 'L13a3090'],
 ['o9_13508', (1, 0), 'SFS [S2: (2,1) (7,4) (9,7)]', 'K13a1042'],
 ['o9_13537', (-1, 1), 'SFS [S2: (4,3) (5,3) (5,3)]', 'K12a215'],
 ['o9_13604', (-1, 1), 'SFS [S2: (2,1) (4,3) (9,11)]', 'L13a1604'],
 ['o9_13604', (0, 1), 'SFS [S2: (4,1) (5,3) (7,3)]', 'K13a878'],
 ['o9_13639', (0, 1), 'SFS [S2: (2,1) (3,2) (17,10)]', 'K12a145'],
 ['o9_13649', (1, 1), 'SFS [S2: (2,1) (3,2) (9,16)]', 'K12a81'],
 ['o9_13666', (1, 0), 'L(191,56)'],
 ['o9_13720', (0, 1), 'SFS [S2: (3,1) (3,2) (19,8)]', 'K13a2004'],
 ['o9_13952', (0, 1), 'L(229,94)'],
 ['o9_14018', (0, 1), 'SFS [S2: (4,3) (5,2) (5,8)]', 'K13a759'],
 ['o9_14018', (1, 0), 'SFS [S2: (2,1) (8,5) (9,7)]', 'L13a1624'],
 ['o9_14079', (-1, 1), 'SFS [S2: (3,2) (4,3) (7,9)]', 'K13a937'],
 ['o9_14079', (0, 1), 'SFS [S2: (3,1) (5,2) (11,7)]', 'L13a4350'],
 ['o9_14136', (0, 1), 'SFS [S2: (3,1) (5,2) (6,5)]', 'K13a2317'],
 ['o9_14136', (1, 0), 'SFS [S2: (2,1) (4,1) (5,14)]', 'L13a2143'],
 ['o9_14376', (0, 1), 'SFS [S2: (2,1) (3,1) (19,27)]', 'K13a1572'],
 ['o9_14599', (-1, 1), 'SFS [S2: (4,3) (5,2) (5,7)]', 'K13a1248'],
 ['o9_14599', (0, 1), 'SFS [S2: (2,1) (7,3) (12,7)]', 'L13a2383'],
 ['o9_14716', (0, 1), 'L(196,55)'],
 ['o9_14831', (-1, 1), 'L(79,28)'],
 ['o9_14974', (0, 1), 'SFS [S2: (3,2) (5,2) (9,4)]', 'L13a3322'],
 ['o9_15633', (0, 1), 'SFS [S2: (2,1) (5,3) (13,8)]', 'K12a17'],
 ['o9_15997', (0, 1), 'SFS [S2: (3,2) (5,2) (11,7)]', 'K13a2033'],
 ['o9_16065', (0, 1), 'SFS [S2: (2,1) (5,2) (13,21)]', 'K13a581'],
 ['o9_16141', (0, 1), 'SFS [S2: (2,1) (5,3) (12,17)]', 'L13a2527'],
 ['o9_16157', (0, 1), 'SFS [S2: (3,1) (5,2) (8,13)]', 'K13a1470'],
 ['o9_16181', (0, 1), 'SFS [S2: (2,1) (5,2) (12,17)]', 'L13a2226'],
 ['o9_16319', (0, 1), 'SFS [S2: (4,3) (5,2) (8,5)]', 'L13a3098'],
 ['o9_16356', (0, 1), 'SFS [S2: (4,3) (5,2) (7,3)]', 'K13a1469'],
 ['o9_16527', (0, 1), 'SFS [S2: (3,1) (5,2) (7,10)]', 'K13a3098'],
 ['o9_16642', (0, 1), 'SFS [S2: (3,2) (5,3) (12,5)]', 'K13a769'],
 ['o9_16748', (0, 1), 'SFS [S2: (3,1) (5,3) (8,5)]', 'K12a220'],
 ['o9_16920', (-1, 1), 'SFS [S2: (2,1) (3,2) (5,13)]', 'K11a11'],
 ['o9_17450', (-1, 1), 'SFS [S2: (3,2) (4,3) (7,5)]', 'K12a275'],
 ['o9_18007', (0, 1), 'L(161,45)'],
 ['o9_18209', (0, 1), 'L(182,53)'],
 ['o9_18813', (0, 1), 'SFS [S2: (2,1) (3,2) (13,8)]', 'K11a32'],
 ['o9_19130', (0, 1), 'SFS [S2: (2,1) (3,2) (11,7)]', 'K11a34'],
 ['o9_20219', (0, 1), 'SFS [S2: (2,1) (2,1) (29,18)]', 'L12a331'],
 ['o9_21893', (1, 0), 'L(93,25)'],
 ['o9_21918', (0, 1), 'SFS [S2: (3,1) (3,2) (8,3)]', 'K11a108'],
 ['o9_22129', (0, 1), 'L(121,35)'],
 ['o9_22477', (0, 1), 'L(97,35)'],
 ['o9_22607', (0, 1), 'SFS [S2: (2,1) (4,1) (13,4)]', 'L13a1949'],
 ['o9_22607', (1, 1), 'SFS [S2: (3,1) (3,1) (11,5)]', 'K13a4839'],
 ['o9_22663', (-1, 1), 'SFS [S2: (3,2) (3,2) (8,5)]', 'K11a100'],
 ['o9_22698', (0, 1), 'SFS [S2: (2,1) (2,1) (13,34)]', 'L12a367'],
 ['o9_22925', (0, 1), 'SFS [S2: (2,1) (5,2) (8,5)]', 'L11a157'],
 ['o9_23023', (0, 1), 'SFS [S2: (2,1) (3,2) (13,21)]', 'K12a99'],
 ['o9_23263', (0, 1), 'SFS [S2: (2,1) (7,3) (9,4)]', 'K13a3593'],
 ['o9_23660', (0, 1), 'SFS [S2: (2,1) (8,3) (9,4)]', 'L13a1894'],
 ['o9_23955', (0, 1), 'SFS [S2: (3,1) (4,3) (10,3)]', 'L13a4275'],
 ['o9_23961', (1, 1), 'SFS [S2: (2,1) (3,1) (7,24)]', 'K13a3136'],
 ['o9_23977', (0, 1), 'SFS [S2: (2,1) (7,3) (8,5)]', 'L12a626'],
 ['o9_24149', (0, 1), 'SFS [S2: (3,1) (3,1) (10,13)]', 'K13a4830'],
 ['o9_24183', (1, 0), 'SFS [S2: (2,1) (2,1) (31,44)]', 'L13a1362'],
 ['o9_24534', (1, 0), 'L(133,30)'],
 ['o9_24592', (0, 1), 'SFS [S2: (2,1) (3,2) (11,3)]', 'K11a33'],
 ['o9_24886', (-1, 1), 'SFS [S2: (3,2) (7,3) (8,5)]', 'K13a1227'],
 ['o9_24889', (0, 1), 'SFS [S2: (2,1) (7,3) (7,10)]', 'K13a3134'],
 ['o9_25595', (0, 1), 'L(139,42)'],
 ['o9_26791', (0, 1), 'L(172,63)'],
 ['o9_27155', (0, 1), 'L(161,61)'],
 ['o9_27261', (0, 1), 'SFS [S2: (2,1) (2,1) (29,21)]', 'L12a188'],
 ['o9_27392', (0, 1), 'SFS [S2: (2,1) (3,2) (23,7)]', 'K13a238'],
 ['o9_27480', (0, 1), 'SFS [S2: (2,1) (5,2) (13,4)]', 'K13a578'],
 ['o9_27737', (1, 1), 'SFS [S2: (2,1) (3,1) (13,16)]', 'K13a3111'],
 ['o9_28113', (1, 1), 'SFS [S2: (3,2) (3,2) (13,3)]', 'K13a2882'],
 ['o9_28153', (0, 1), 'SFS [S2: (2,1) (5,3) (7,12)]', 'K12a21'],
 ['o9_28529', (1, 0), 'SFS [S2: (2,1) (5,3) (16,7)]', 'L13a2219'],
 ['o9_28592', (-1, 1), 'SFS [S2: (3,2) (5,2) (9,4)]', 'L13a3322'],
 ['o9_28746', (0, 1), 'SFS [S2: (2,1) (3,2) (17,12)]', 'K12a82'],
 ['o9_28810', (0, 1), 'SFS [S2: (3,2) (5,3) (7,5)]', 'L12a1072'],
 ['o9_29246', (0, 1), 'SFS [S2: (2,1) (2,1) (27,35)]', 'L13a710'],
 ['o9_29436', (1, 1), 'SFS [S2: (4,3) (5,3) (7,3)]', 'K13a842'],
 ['o9_30375', (0, 1), 'SFS [S2: (2,1) (5,2) (8,13)]', 'L12a516'],
 ['o9_30790', (1, 1), 'SFS [S2: (3,2) (5,2) (7,10)]', 'L13a4191'],
 ['o9_32257', (0, 1), 'SFS [S2: (2,1) (3,1) (11,7)]', 'K11a257'],
 ['o9_35682', (0, 1), 'SFS [S2: (2,1) (2,1) (19,8)]', 'L11a89'],
 ['o9_35772', (0, 1), 'SFS [S2: (2,1) (2,1) (17,10)]', 'L11a109'],
 ['s042', (0, 1), 'L(57,16)'],
 ['s042', (1, 1), 'SFS [S2: (2,1) (2,1) (3,11)]', 'L10a41'],
 ['s068', (-1, 1), 'SFS [S2: (2,1) (3,2) (3,8)]', 'K10a17'],
 ['s068', (0, 1), 'L(68,19)'],
 ['s086', (-1, 1), 'SFS [S2: (2,1) (4,1) (5,2)]', 'L10a67'],
 ['s086', (0, 1), 'L(45,14)'],
 ['s104', (-1, 1), 'L(68,19)'],
 ['s104', (0, 1), 'L(67,18)'],
 ['s114', (-1, 1), 'L(79,29)'],
 ['s114', (0, 1), 'L(80,31)'],
 ['s294', (0, 1), 'L(47,13)'],
 ['s301', (0, 1), 'SFS [S2: (2,1) (3,1) (4,7)]', 'L10a72'],
 ['s301', (1, 1), 'SFS [S2: (2,1) (3,2) (7,2)]', 'K10a9'],
 ['s308', (-1, 1), 'SFS [S2: (2,1) (2,1) (7,9)]', 'L10a19'],
 ['s308', (0, 1), 'SFS [S2: (3,1) (3,2) (4,3)]', 'K10a42'],
 ['s336', (-1, 1), 'L(50,19)'],
 ['s344', (1, 0), 'L(63,17)'],
 ['s344', (1, 1), 'SFS [S2: (2,1) (2,1) (9,7)]', 'L10a10'],
 ['s346', (0, 1), 'L(73,27)'],
 ['s346', (1, 1), 'SFS [S2: (2,1) (2,1) (13,5)]', 'L10a29'],
 ['s367', (0, 1), 'SFS [S2: (3,1) (3,2) (5,2)]', 'K10a37'],
 ['s367', (1, 1), 'L(62,23)'],
 ['s369', (-1, 1), 'SFS [S2: (2,1) (3,2) (4,7)]', 'L10a59'],
 ['s369', (1, 0), 'L(71,21)'],
 ['s407', (-1, 1), 'SFS [S2: (2,1) (3,2) (8,3)]', 'L10a60'],
 ['s407', (0, 1), 'L(75,29)'],
 ['s582', (-1, 1), 'SFS [S2: (2,1) (2,1) (9,4)]', 'L10a40'],
 ['s582', (0, 1), 'SFS [S2: (2,1) (3,1) (7,3)]', 'K10a82'],
 ['s665', (0, 1), 'L(75,29)'],
 ['s684', (0, 1), 'L(55,21)'],
 ['s769', (0, 1), 'SFS [S2: (3,2) (3,2) (4,3)]', 'K10a40'],
 ['s769', (1, 0), 'SFS [S2: (2,1) (2,1) (7,12)]', 'L10a30'],
 ['s800', (0, 1), 'L(70,29)'],
 ['t00110', (0, 1), 'L(107,25)'],
 ['t00110', (1, 1), 'SFS [S2: (2,1) (3,2) (4,13)]', 'L12a647'],
 ['t00146', (-1, 1), 'SFS [S2: (2,1) (3,2) (5,14)]', 'K12a158'],
 ['t00146', (0, 1), 'L(118,25)'],
 ['t00324', (-1, 1), 'SFS [S2: (2,1) (5,2) (6,1)]', 'L12a896'],
 ['t00324', (0, 1), 'L(63,20)'],
 ['t00423', (-1, 1), 'L(166,49)'],
 ['t00423', (0, 1), 'L(165,49)'],
 ['t00434', (0, 1), 'L(178,49)'],
 ['t00434', (1, 1), 'L(177,49)'],
 ['t00729', (-1, 1), 'SFS [S2: (2,1) (2,1) (5,22)]', 'L12a410'],
 ['t00729', (0, 1), 'SFS [S2: (2,1) (3,1) (11,9)]', 'K12a591'],
 ['t00787', (0, 1), 'SFS [S2: (2,1) (3,1) (14,11)]', 'L12a872'],
 ['t00787', (1, 1), 'SFS [S2: (2,1) (3,2) (5,17)]', 'K12a118'],
 ['t00826', (0, 1), 'L(155,46)'],
 ['t00855', (0, 1), 'L(165,49)'],
 ['t00873', (1, 0), 'L(147,62)'],
 ['t00873', (1, 1), 'SFS [S2: (2,1) (4,3) (9,7)]', 'L12a492'],
 ['t00932', (-1, 1), 'SFS [S2: (2,1) (4,3) (11,8)]', 'L12a595'],
 ['t00932', (1, 0), 'L(173,64)'],
 ['t01033', (0, 1), 'SFS [S2: (3,1) (4,1) (4,7)]', 'L12a1058'],
 ['t01033', (1, 1), 'SFS [S2: (2,1) (5,4) (7,2)]', 'K12a420'],
 ['t01037', (-1, 1), 'SFS [S2: (2,1) (4,1) (7,9)]', 'L12a530'],
 ['t01037', (0, 1), 'SFS [S2: (3,1) (4,3) (5,4)]', 'K12a1028'],
 ['t01125', (0, 1), 'L(127,27)'],
 ['t01125', (1, 1), 'SFS [S2: (2,1) (2,1) (23,9)]', 'L12a339'],
 ['t01216', (1, 0), 'L(137,37)'],
 ['t01216', (1, 1), 'SFS [S2: (2,1) (2,1) (19,15)]', 'L12a187'],
 ['t01268', (0, 1), 'L(173,64)'],
 ['t01268', (1, 1), 'SFS [S2: (2,1) (2,1) (31,12)]', 'L12a221'],
 ['t01292', (1, 0), 'L(163,44)'],
 ['t01292', (1, 1), 'SFS [S2: (2,1) (2,1) (23,18)]', 'L12a327'],
 ['t01318', (0, 1), 'L(115,34)'],
 ['t01368', (0, 1), 'L(128,47)'],
 ['t01409', (1, 0), 'L(193,81)'],
 ['t01409', (1, 1), 'SFS [S2: (3,2) (3,2) (7,12)]', 'L12a932'],
 ['t01422', (-1, 1), 'L(82,31)'],
 ['t01424', (-1, 1), 'SFS [S2: (3,2) (3,2) (8,13)]', 'K12a281'],
 ['t01424', (1, 0), 'L(212,81)'],
 ['t01440', (0, 1), 'SFS [S2: (3,2) (5,1) (5,2)]', 'K12a619'],
 ['t01440', (1, 1), 'L(94,35)'],
 ['t01598', (-1, 1), 'SFS [S2: (2,1) (3,2) (10,17)]', 'L12a887'],
 ['t01598', (1, 0), 'L(171,50)'],
 ['t01636', (0, 1), 'L(167,46)'],
 ['t01636', (1, 1), 'SFS [S2: (2,1) (3,2) (18,7)]', 'L12a888'],
 ['t01646', (-1, 1), 'SFS [S2: (2,1) (3,2) (11,19)]', 'K12a98'],
 ['t01646', (1, 0), 'L(192,71)'],
 ['t01690', (0, 1), 'L(196,75)'],
 ['t01690', (1, 1), 'SFS [S2: (2,1) (3,2) (21,8)]', 'K12a95'],
 ['t01757', (-1, 1), 'SFS [S2: (2,1) (2,1) (9,20)]', 'L12a269'],
 ['t01757', (0, 1), 'SFS [S2: (3,1) (5,2) (5,4)]', 'K12a752'],
 ['t01834', (-1, 1), 'SFS [S2: (2,1) (3,2) (9,11)]', 'K12a62'],
 ['t01834', (0, 1), 'SFS [S2: (3,1) (5,3) (5,4)]', 'L12a1323'],
 ['t01850', (1, 0), 'L(108,23)'],
 ['t01850', (1, 1), 'SFS [S2: (2,1) (3,1) (11,9)]', 'K12a591'],
 ['t01863', (0, 1), 'L(133,36)'],
 ['t01863', (1, 1), 'SFS [S2: (2,1) (3,1) (18,7)]', 'L12a889'],
 ['t01949', (1, 0), 'L(127,29)'],
 ['t01949', (1, 1), 'SFS [S2: (3,1) (3,2) (5,9)]', 'L12a1292'],
 ['t02099', (-1, 1), 'SFS [S2: (2,1) (3,1) (11,7)]', 'K11a257'],
 ['t02104', (0, 1), 'L(119,50)'],
 ['t02238', (0, 1), 'SFS [S2: (2,1) (3,1) (7,19)]', 'K12a238'],
 ['t02378', (-1, 1), 'SFS [S2: (3,1) (3,2) (13,5)]', 'L12a1299'],
 ['t02378', (0, 1), 'L(163,62)'],
 ['t02398', (0, 1), 'SFS [S2: (3,1) (3,2) (7,12)]', 'K12a524'],
 ['t02404', (0, 1), 'SFS [S2: (2,1) (2,1) (19,12)]', 'L11a62'],
 ['t02470', (0, 1), 'SFS [S2: (2,1) (3,2) (11,15)]', 'K12a112'],
 ['t02470', (1, 1), 'SFS [S2: (2,1) (3,2) (18,7)]', 'L12a888'],
 ['t02537', (-1, 1), 'SFS [S2: (2,1) (4,3) (13,5)]', 'L12a599'],
 ['t02537', (0, 1), 'SFS [S2: (3,1) (3,2) (8,11)]', 'K12a445'],
 ['t02567', (-1, 1), 'SFS [S2: (2,1) (3,1) (13,18)]', 'K12a240'],
 ['t02567', (0, 1), 'SFS [S2: (3,2) (4,3) (8,3)]', 'L12a964'],
 ['t02639', (0, 1), 'SFS [S2: (3,2) (3,2) (13,5)]', 'K12a229'],
 ['t02639', (1, 1), 'SFS [S2: (2,1) (2,1) (21,29)]', 'L12a256'],
 ['t03566', (0, 1), 'SFS [S2: (2,1) (3,1) (4,15)]', 'L12a678'],
 ['t03566', (1, 0), 'SFS [S2: (2,1) (5,4) (7,2)]', 'K12a420'],
 ['t03607', (0, 1), 'SFS [S2: (2,1) (3,1) (19,8)]', 'K12a436'],
 ['t03607', (1, 1), 'SFS [S2: (2,1) (2,1) (25,11)]', 'L12a350'],
 ['t03709', (0, 1), 'SFS [S2: (3,1) (3,2) (4,11)]', 'K12a376'],
 ['t03709', (1, 0), 'SFS [S2: (2,1) (5,4) (8,3)]', 'L12a615'],
 ['t03713', (-1, 1), 'SFS [S2: (2,1) (3,2) (5,13)]', 'K11a11'],
 ['t03781', (0, 1), 'SFS [S2: (3,1) (4,1) (7,3)]', 'K12a1243'],
 ['t03781', (1, 1), 'SFS [S2: (2,1) (2,1) (17,4)]', 'L12a289'],
 ['t03864', (1, 1), 'SFS [S2: (3,2) (3,2) (5,8)]', 'L11a268'],
 ['t03956', (-1, 1), 'SFS [S2: (2,1) (5,3) (5,4)]', 'K11a7'],
 ['t03979', (0, 1), 'L(115,34)'],
 ['t04003', (-1, 1), 'SFS [S2: (2,1) (2,1) (11,19)]', 'L11a77'],
 ['t04019', (-1, 1), 'SFS [S2: (2,1) (3,1) (11,5)]', 'K12a843'],
 ['t04019', (0, 1), 'SFS [S2: (2,1) (4,1) (9,4)]', 'L12a646'],
 ['t04102', (1, 1), 'SFS [S2: (2,1) (3,2) (11,8)]', 'K11a31'],
 ['t04180', (0, 1), 'L(125,49)'],
 ['t04228', (0, 1), 'SFS [S2: (2,1) (4,3) (7,10)]', 'L12a676'],
 ['t04228', (1, 0), 'SFS [S2: (2,1) (3,2) (13,10)]', 'K12a144'],
 ['t04244', (1, 0), 'L(181,70)'],
 ['t04382', (0, 1), 'L(157,46)'],
 ['t04721', (1, 0), 'L(147,41)'],
 ['t05118', (-1, 1), 'SFS [S2: (2,1) (5,2) (7,12)]', 'K12a175'],
 ['t05118', (0, 1), 'SFS [S2: (2,1) (5,3) (12,5)]', 'L12a702'],
 ['t05239', (0, 1), 'SFS [S2: (3,2) (4,3) (7,4)]', 'K12a368'],
 ['t05239', (1, 0), 'SFS [S2: (2,1) (4,3) (7,12)]', 'L12a600'],
 ['t05390', (-1, 1), 'SFS [S2: (2,1) (4,3) (7,5)]', 'L11a151'],
 ['t05425', (0, 1), 'L(117,43)'],
 ['t05426', (0, 1), 'SFS [S2: (3,2) (4,3) (8,5)]', 'L12a972'],
 ['t05426', (1, 0), 'SFS [S2: (2,1) (5,3) (7,12)]', 'K12a21'],
 ['t05538', (0, 1), 'L(105,41)'],
 ['t05564', (0, 1), 'L(135,41)'],
 ['t05578', (0, 1), 'SFS [S2: (4,3) (4,3) (5,3)]', 'L12a962'],
 ['t05578', (1, 0), 'SFS [S2: (2,1) (3,1) (11,19)]', 'K12a258'],
 ['t05658', (1, 0), 'L(112,31)'],
 ['t05663', (0, 1), 'SFS [S2: (3,2) (5,2) (5,4)]', 'L12a1105'],
 ['t05663', (1, 0), 'SFS [S2: (2,1) (3,1) (9,16)]', 'K12a329'],
 ['t05674', (-1, 1), 'SFS [S2: (2,1) (4,3) (7,9)]', 'L12a501'],
 ['t05674', (0, 1), 'SFS [S2: (3,1) (5,3) (7,3)]', 'K12a749'],
 ['t05695', (0, 1), 'L(120,49)'],
 ['t06001', (1, 0), 'L(133,39)'],
 ['t06440', (0, 1), 'SFS [S2: (3,2) (5,2) (7,3)]', 'K12a568'],
 ['t06463', (0, 1), 'SFS [S2: (2,1) (5,2) (8,13)]', 'L12a516'],
 ['t06525', (0, 1), 'SFS [S2: (2,1) (5,3) (8,5)]', 'L11a159'],
 ['t06570', (0, 1), 'SFS [S2: (2,1) (5,2) (7,10)]', 'K12a194'],
 ['t06605', (0, 1), 'SFS [S2: (3,2) (5,2) (8,5)]', 'K12a263'],
 ['t07348', (0, 1), 'SFS [S2: (2,1) (3,2) (8,5)]', 'L10a61'],
 ['t08111', (0, 1), 'SFS [S2: (2,1) (3,2) (8,3)]', 'L10a60'],
 ['t08201', (0, 1), 'SFS [S2: (3,2) (3,2) (5,3)]', 'K10a38'],
 ['t08267', (0, 1), 'SFS [S2: (2,1) (2,1) (21,13)]', 'L11a55'],
 ['t08403', (0, 1), 'L(107,41)'],
 ['t09016', (0, 1), 'SFS [S2: (2,1) (2,1) (13,21)]', 'L11a78'],
 ['t09267', (0, 1), 'SFS [S2: (3,1) (3,2) (10,3)]', 'K12a577'],
 ['t09313', (0, 1), 'SFS [S2: (2,1) (3,2) (16,7)]', 'L12a718'],
 ['t09455', (0, 1), 'SFS [S2: (2,1) (3,1) (10,13)]', 'L12a926'],
 ['t09580', (0, 1), 'L(116,45)'],
 ['t09704', (0, 1), 'SFS [S2: (2,1) (2,1) (19,27)]', 'L12a292'],
 ['t09852', (0, 1), 'SFS [S2: (2,1) (2,1) (13,5)]', 'L10a29'],
 ['t10230', (0, 1), 'SFS [S2: (2,1) (2,1) (11,7)]', 'L10a28'],
 ['t10462', (0, 1), 'SFS [S2: (2,1) (5,3) (7,5)]', 'K11a1'],
 ['t10643', (1, 1), 'SFS [S2: (3,2) (3,2) (10,3)]', 'K12a648'],
 ['t10681', (0, 1), 'SFS [S2: (2,1) (3,2) (12,17)]', 'L12a709'],
 ['t10985', (-1, 1), 'SFS [S2: (3,2) (5,3) (7,3)]', 'L12a1286'],
 ['v0082', (0, 1), 'L(82,23)'],
 ['v0082', (1, 1), 'SFS [S2: (2,1) (3,1) (3,11)]', 'K11a58'],
 ['v0114', (0, 1), 'L(93,25)'],
 ['v0114', (1, 1), 'SFS [S2: (2,1) (3,2) (4,11)]', 'L11a190'],
 ['v0165', (0, 1), 'L(54,17)'],
 ['v0165', (1, 1), 'SFS [S2: (2,1) (5,1) (5,2)]', 'K11a62'],
 ['v0220', (0, 1), 'L(116,45)'],
 ['v0220', (1, 1), 'L(117,43)'],
 ['v0223', (0, 1), 'L(129,49)'],
 ['v0223', (1, 1), 'L(128,47)'],
 ['v0330', (0, 1), 'SFS [S2: (2,1) (3,1) (6,5)]', 'L11a274'],
 ['v0330', (1, 1), 'L(59,24)'],
 ['v0398', (0, 1), 'SFS [S2: (2,1) (3,1) (9,7)]', 'K11a118'],
 ['v0398', (1, 1), 'SFS [S2: (2,1) (2,1) (5,17)]', 'L11a94'],
 ['v0407', (0, 1), 'L(91,27)'],
 ['v0424', (1, 0), 'L(83,19)'],
 ['v0424', (1, 1), 'SFS [S2: (2,1) (4,3) (5,4)]', 'L11a186'],
 ['v0434', (0, 1), 'L(101,30)'],
 ['v0497', (1, 0), 'L(109,45)'],
 ['v0497', (1, 1), 'SFS [S2: (2,1) (4,3) (7,5)]', 'L11a151'],
 ['v0554', (0, 1), 'SFS [S2: (3,1) (3,1) (5,4)]', 'L11a383'],
 ['v0554', (1, 1), 'L(67,29)'],
 ['v0570', (0, 1), 'SFS [S2: (3,1) (3,1) (4,7)]', 'K11a340'],
 ['v0570', (1, 1), 'SFS [S2: (2,1) (4,3) (7,2)]', 'L11a154'],
 ['v0573', (-1, 1), 'SFS [S2: (2,1) (3,1) (7,9)]', 'K11a153'],
 ['v0573', (0, 1), 'SFS [S2: (3,1) (4,3) (4,3)]', 'L11a296'],
 ['v0707', (-1, 1), 'L(66,25)'],
 ['v0709', (1, 0), 'L(61,13)'],
 ['v0709', (1, 1), 'SFS [S2: (2,1) (3,1) (6,5)]', 'L11a274'],
 ['v0715', (-1, 1), 'SFS [S2: (3,2) (3,2) (4,7)]', 'K11a107'],
 ['v0715', (1, 0), 'L(112,31)'],
 ['v0740', (0, 1), 'SFS [S2: (3,2) (4,1) (5,2)]', 'K11a133'],
 ['v0740', (1, 1), 'L(78,29)'],
 ['v0741', (1, 0), 'L(131,50)'],
 ['v0741', (1, 1), 'SFS [S2: (3,2) (3,2) (5,8)]', 'L11a268'],
 ['v0759', (0, 1), 'L(85,26)'],
 ['v0765', (-1, 1), 'SFS [S2: (2,1) (2,1) (9,11)]', 'L11a43'],
 ['v0765', (0, 1), 'SFS [S2: (3,1) (3,2) (5,4)]', 'K11a201'],
 ['v0847', (-1, 1), 'SFS [S2: (2,1) (5,2) (5,4)]', 'K11a60'],
 ['v0847', (1, 0), 'L(84,25)'],
 ['v0912', (1, 0), 'L(98,27)'],
 ['v0912', (1, 1), 'SFS [S2: (3,1) (3,2) (4,7)]', 'K11a139'],
 ['v0939', (0, 1), 'SFS [S2: (2,1) (2,1) (11,7)]', 'L10a28'],
 ['v0945', (0, 1), 'SFS [S2: (2,1) (3,1) (7,12)]', 'K11a94'],
 ['v1077', (0, 1), 'SFS [S2: (2,1) (3,2) (8,11)]', 'L11a160'],
 ['v1077', (1, 1), 'SFS [S2: (2,1) (3,2) (13,5)]', 'K11a35'],
 ['v1109', (-1, 1), 'SFS [S2: (2,1) (2,1) (13,18)]', 'L11a113'],
 ['v1109', (0, 1), 'SFS [S2: (3,2) (3,2) (8,3)]', 'K11a134'],
 ['v1300', (0, 1), 'L(61,16)'],
 ['v1300', (1, 0), 'SFS [S2: (2,1) (4,1) (5,4)]', 'L11a200'],
 ['v1392', (-1, 1), 'L(64,23)'],
 ['v1547', (-1, 1), 'L(71,26)'],
 ['v1620', (0, 1), 'SFS [S2: (3,1) (3,1) (7,3)]', 'K11a361'],
 ['v1620', (1, 1), 'SFS [S2: (2,1) (2,1) (13,4)]', 'L11a75'],
 ['v1628', (0, 1), 'SFS [S2: (2,1) (3,1) (4,11)]', 'L11a191'],
 ['v1628', (1, 0), 'SFS [S2: (2,1) (5,2) (5,4)]', 'K11a60'],
 ['v1690', (-1, 1), 'SFS [S2: (2,1) (3,2) (5,8)]', 'K10a3'],
 ['v1709', (0, 1), 'L(89,34)'],
 ['v1716', (1, 1), 'SFS [S2: (2,1) (2,1) (11,8)]', 'L10a25'],
 ['v1718', (-1, 1), 'SFS [S2: (2,1) (4,3) (7,3)]', 'L11a189'],
 ['v1718', (0, 1), 'SFS [S2: (2,1) (5,2) (7,3)]', 'K11a63'],
 ['v1728', (1, 1), 'SFS [S2: (2,1) (4,3) (5,3)]', 'L10a57'],
 ['v1810', (0, 1), 'L(100,39)'],
 ['v1832', (0, 1), 'L(81,31)'],
 ['v1839', (0, 1), 'L(121,46)'],
 ['v1921', (0, 1), 'L(99,29)'],
 ['v1940', (0, 1), 'SFS [S2: (2,1) (4,3) (5,7)]', 'L11a155'],
 ['v1940', (1, 0), 'SFS [S2: (2,1) (3,2) (9,7)]', 'K11a16'],
 ['v1966', (0, 1), 'SFS [S2: (3,2) (4,3) (5,3)]', 'K11a87'],
 ['v1966', (1, 0), 'SFS [S2: (2,1) (2,1) (11,19)]', 'L11a77'],
 ['v1980', (0, 1), 'L(49,18)'],
 ['v1986', (0, 1), 'L(99,29)'],
 ['v2024', (0, 1), 'SFS [S2: (2,1) (5,3) (7,3)]', 'K11a10'],
 ['v2024', (1, 1), 'SFS [S2: (2,1) (4,3) (5,7)]', 'L11a155'],
 ['v2090', (-1, 1), 'SFS [S2: (3,2) (3,2) (5,7)]', 'K11a78'],
 ['v2090', (0, 1), 'SFS [S2: (2,1) (5,2) (8,5)]', 'L11a157'],
 ['v2215', (0, 1), 'L(80,31)'],
 ['v2325', (0, 1), 'L(95,39)'],
 ['v2759', (0, 1), 'SFS [S2: (2,1) (3,1) (9,4)]', 'K11a260'],
 ['v2759', (1, 1), 'SFS [S2: (2,1) (3,1) (10,3)]', 'L11a259'],
 ['v2930', (0, 1), 'L(79,23)'],
 ['v3354', (1, 1), 'SFS [S2: (3,2) (3,2) (7,3)]', 'K11a202']]
In [22]:
len(UNCLEAR_NON_HYPERBOLIC_SLOPES)
Out[22]:
184
In [23]:
UNCLEAR_NON_HYPERBOLIC_SLOPES
Out[23]:
[['m239', (-1, 1)],
 ['o9_01584', (-1, 1)],
 ['o9_01621', (1, 1)],
 ['o9_02655', (-1, 1)],
 ['o9_02696', (-1, 1)],
 ['o9_02786', (-2, 1)],
 ['o9_03133', (1, 1)],
 ['o9_03313', (1, 1)],
 ['o9_03802', (-1, 1)],
 ['o9_04106', (1, 1)],
 ['o9_04205', (1, 1)],
 ['o9_04245', (-1, 1)],
 ['o9_04269', (-2, 1)],
 ['o9_04438', (-1, 1)],
 ['o9_05021', (-1, 1)],
 ['o9_05177', (-1, 1)],
 ['o9_05229', (-1, 1)],
 ['o9_05357', (-1, 1)],
 ['o9_05562', (-1, 1)],
 ['o9_05618', (-1, 1)],
 ['o9_05970', (-1, 1)],
 ['o9_06060', (1, 1)],
 ['o9_06154', (1, 1)],
 ['o9_07893', (-1, 1)],
 ['o9_07945', (-1, 1)],
 ['o9_08647', (1, 1)],
 ['o9_08771', (1, 1)],
 ['o9_08828', (-1, 1)],
 ['o9_08875', (-1, 1)],
 ['o9_09213', (1, 1)],
 ['o9_11999', (1, 1)],
 ['o9_12459', (-1, 1)],
 ['o9_12519', (-1, 1)],
 ['o9_12757', (-1, 1)],
 ['o9_12873', (-1, 1)],
 ['o9_12971', (-1, 1)],
 ['o9_13052', (-1, 1)],
 ['o9_13125', (1, 1)],
 ['o9_13188', (-1, 1)],
 ['o9_13433', (1, 1)],
 ['o9_13639', (1, 1)],
 ['o9_13666', (1, 1)],
 ['o9_13720', (1, 1)],
 ['o9_13952', (1, 1)],
 ['o9_14364', (-1, 1)],
 ['o9_14376', (1, 1)],
 ['o9_14495', (-1, 1)],
 ['o9_14716', (-1, 1)],
 ['o9_14831', (0, 1)],
 ['o9_14974', (1, 1)],
 ['o9_15506', (1, 1)],
 ['o9_15633', (1, 1)],
 ['o9_15997', (-1, 1)],
 ['o9_16065', (-1, 1)],
 ['o9_16141', (-1, 1)],
 ['o9_16157', (-1, 1)],
 ['o9_16181', (1, 1)],
 ['o9_16319', (-1, 1)],
 ['o9_16356', (1, 1)],
 ['o9_16527', (1, 1)],
 ['o9_16642', (-1, 1)],
 ['o9_16748', (-1, 1)],
 ['o9_16920', (0, 1)],
 ['o9_18007', (-1, 1)],
 ['o9_18209', (1, 1)],
 ['o9_18633', (-1, 1)],
 ['o9_18813', (1, 1)],
 ['o9_19130', (1, 1)],
 ['o9_20219', (-1, 1)],
 ['o9_21893', (-1, 1)],
 ['o9_21918', (-1, 1)],
 ['o9_22129', (-1, 1)],
 ['o9_22477', (-1, 1)],
 ['o9_22663', (0, 1)],
 ['o9_22698', (1, 1)],
 ['o9_22925', (-1, 1)],
 ['o9_23023', (1, 1)],
 ['o9_23263', (1, 1)],
 ['o9_23660', (1, 1)],
 ['o9_23955', (-1, 1)],
 ['o9_23961', (0, 1)],
 ['o9_24149', (-1, 1)],
 ['o9_24183', (1, 1)],
 ['o9_24534', (-1, 1)],
 ['o9_24592', (-1, 1)],
 ['o9_24886', (0, 1)],
 ['o9_24889', (1, 1)],
 ['o9_25595', (-1, 1)],
 ['o9_26604', (0, 1)],
 ['o9_26604', (1, 1)],
 ['o9_27392', (-1, 1)],
 ['o9_27480', (1, 1)],
 ['o9_27737', (0, 1)],
 ['o9_28113', (0, 1)],
 ['o9_28529', (-1, 1)],
 ['o9_28592', (0, 1)],
 ['o9_29246', (-1, 1)],
 ['o9_29436', (0, 1)],
 ['o9_29529', (0, 1)],
 ['o9_29529', (1, 1)],
 ['o9_30721', (0, 1)],
 ['o9_30721', (1, 1)],
 ['o9_30790', (0, 1)],
 ['o9_31165', (0, 1)],
 ['o9_31165', (1, 1)],
 ['o9_33526', (0, 1)],
 ['o9_33585', (-1, 1)],
 ['o9_33585', (0, 1)],
 ['o9_34403', (0, 1)],
 ['o9_35320', (-1, 1)],
 ['o9_35549', (0, 1)],
 ['o9_35549', (1, 1)],
 ['o9_35736', (0, 1)],
 ['o9_35736', (1, 1)],
 ['o9_37941', (0, 1)],
 ['o9_39394', (0, 1)],
 ['o9_40179', (0, 1)],
 ['s294', (-1, 1)],
 ['s336', (-2, 1)],
 ['s665', (1, 1)],
 ['s684', (1, 1)],
 ['s800', (-1, 1)],
 ['t00826', (1, 1)],
 ['t00855', (-1, 1)],
 ['t01318', (1, 1)],
 ['t01368', (1, 1)],
 ['t01422', (-2, 1)],
 ['t02099', (-2, 1)],
 ['t02104', (-1, 1)],
 ['t02238', (-1, 1)],
 ['t02398', (-1, 1)],
 ['t02404', (-1, 1)],
 ['t03979', (-1, 1)],
 ['t04180', (-1, 1)],
 ['t04244', (1, 1)],
 ['t04382', (1, 1)],
 ['t04721', (1, 1)],
 ['t05425', (1, 1)],
 ['t05538', (-1, 1)],
 ['t05564', (-1, 1)],
 ['t05658', (1, 1)],
 ['t05695', (-1, 1)],
 ['t06001', (-1, 1)],
 ['t06440', (-1, 1)],
 ['t06463', (1, 1)],
 ['t06525', (1, 1)],
 ['t06570', (-1, 1)],
 ['t06605', (1, 1)],
 ['t07348', (-1, 1)],
 ['t08111', (-1, 1)],
 ['t08201', (1, 1)],
 ['t08267', (1, 1)],
 ['t08403', (-1, 1)],
 ['t09016', (-1, 1)],
 ['t09267', (1, 1)],
 ['t09313', (1, 1)],
 ['t09455', (-1, 1)],
 ['t09704', (-1, 1)],
 ['t09852', (1, 1)],
 ['t09954', (-1, 1)],
 ['t09954', (0, 1)],
 ['t10188', (0, 1)],
 ['t10643', (0, 1)],
 ['t10681', (-1, 1)],
 ['t10985', (0, 1)],
 ['t11852', (0, 1)],
 ['t12753', (0, 1)],
 ['v0407', (1, 1)],
 ['v0434', (-1, 1)],
 ['v0707', (-2, 1)],
 ['v0759', (-1, 1)],
 ['v0939', (-1, 1)],
 ['v0945', (1, 1)],
 ['v1709', (-1, 1)],
 ['v1810', (-1, 1)],
 ['v1832', (1, 1)],
 ['v1839', (-1, 1)],
 ['v1921', (-1, 1)],
 ['v1980', (-1, 1)],
 ['v1986', (-1, 1)],
 ['v2215', (1, 1)],
 ['v2325', (-1, 1)],
 ['v2930', (-1, 1)],
 ['v3354', (0, 1)]]

For the remaining 184 unclear non hyperbolic fillings we proceed as follows.

We build for any of those fillings a list of DBCs of links in the HT link table that have the same homology as the filling. Then we run Dunfield's code on them to search for a match.

In [24]:
#### This is Dunfield's util.py from his exceptional census

####  for a snappy manifold M descibed as a single filling of a cusp (so do filled_triangulation() as needed) 
####  the command regina_name(M) gives what regina identifies M as

"""

This file provides functions for working with Regina (with a little
help from SnapPy) to:

1. Give a standard name ("identify") manifolds, especially Seifert and
   graph manifolds.

2. Find essential tori.

3. Try to compute the JSJ decomposition.

"""

import regina
import snappy
import re
import networkx as nx

def appears_hyperbolic(M):
    acceptable = ['all tetrahedra positively oriented',
                  'contains negatively oriented tetrahedra']
    return M.solution_type() in acceptable and M.volume() > 0

def children(packet):
    child = packet.firstChild()
    while child:
        yield child
        child = child.nextSibling()

def to_regina(data):
    if hasattr(data, '_to_string'):
        data = data._to_string()
    if isinstance(data, str):
        if data.find('(') > -1:
            data = closed_isosigs(data)[0]
        return regina.Triangulation3(data)
    assert isinstance(data, regina.Triangulation3)
    return data

def extract_vector(surface):
    """
    Extract the raw vector of the (almost) normal surface in Regina's
    NS_STANDARD coordinate system.
    """
    S = surface
    T = S.triangulation()
    n = T.countTetrahedra()
    ans = []
    for i in range(n):
        for j in range(4):
            ans.append(S.triangles(i, j))
        for j in range(3):
            ans.append(S.quads(i, j))
    A = regina.NormalSurface(T, regina.NS_STANDARD, ans)
    assert A.sameSurface(S)
    return ans

def haken_sum(S1, S2):
    T = S1.triangulation()
    assert S1.locallyCompatible(S2)
    v1, v2 = extract_vector(S1), extract_vector(S2)
    sum_vec = [x1 + x2 for x1, x2 in zip(v1, v2)]
    A = regina.NormalSurface(T, regina.NS_STANDARD, sum_vec)
    assert S1.locallyCompatible(A) and S2.locallyCompatible(A)
    assert S1.eulerChar() + S2.eulerChar() == A.eulerChar()
    return A


def census_lookup(regina_tri):
    """
    Should the input triangulation be in Regina's census, return the
    name of the manifold, dropping the triangulation number.
    """
    hits = regina.Census.lookup(regina_tri)
    hit = hits.first()
    if hit is not None:
        name = hit.name()
        match = re.search('(.*) : #\d+$', name)
        if match:
            return match.group(1)
        else:
            return match

def standard_lookup(regina_tri):
    match = regina.StandardTriangulation.isStandardTriangulation(regina_tri)
    if match:
        return match.manifold()

def closed_isosigs(snappy_manifold, trys=20, max_tets=50):
    """
    Generate a slew of 1-vertex triangulations of a closed manifold
    using SnapPy.
    
    >>> M = snappy.Manifold('m004(1,2)')
    >>> len(closed_isosigs(M, trys=5)) > 0
    True
    """
    M = snappy.Manifold(snappy_manifold)
    assert M.cusp_info('complete?') == [False]
    surgery_descriptions = [M.copy()]

    try:
        for curve in M.dual_curves():
            N = M.drill(curve)
            N.dehn_fill((1,0), 1)
            surgery_descriptions.append(N.filled_triangulation([0]))
    except snappy.SnapPeaFatalError:
        pass

    if len(surgery_descriptions) == 1:
        # Try again, but unfill the cusp first to try to find more
        # dual curves.
        try:
            filling = M.cusp_info(0).filling
            N = M.copy()
            N.dehn_fill((0, 0), 0)
            N.randomize()
            for curve in N.dual_curves():
                D = N.drill(curve)
                D.dehn_fill([filling, (1,0)])
                surgery_descriptions.append(D.filled_triangulation([0]))
        except snappy.SnapPeaFatalError:
            pass

    ans = set()
    for N in surgery_descriptions:
        for i in range(trys):
            T = N.filled_triangulation()
            if T._num_fake_cusps() == 1:
                n = T.num_tetrahedra()
                if n <= max_tets:
                    ans.add((n, T.triangulation_isosig(decorated=False)))
            N.randomize()

    return [iso for n, iso in sorted(ans)]

def best_match(matches):
    """
    Prioritize the most concise description that Regina provides to
    try to avoid things like the Seifert fibered space of a node being
    a solid torus or having several nodes that can be condensed into a
    single Seifert fibered piece.
    """
    
    def score(m):
        if isinstance(m, regina.SFSpace):
            s = 0
        elif isinstance(m, regina.GraphLoop):
            s = 1
        elif isinstance(m, regina.GraphPair):
            s = 2
        elif isinstance(m, regina.GraphTriple):
            s = 3
        elif m is None:
            s = 10000
        else:
            s = 4
        return (s, str(m))
    return min(matches, key=score)

def identify_with_torus_boundary(regina_tri):
    """
    Use the combined power of Regina and SnapPy to try to give a name
    to the input manifold.
    """
    
    kind, name = None, None
    
    P = regina_tri.clone()
    P.finiteToIdeal()
    P.intelligentSimplify()
    M = snappy.Manifold(P.isoSig())
    M.simplify()
    if appears_hyperbolic(M):
        for i in range(100):
            if M.solution_type() == 'all tetrahedra positively oriented':
                break
            M.randomize()
        
        if not M.verify_hyperbolicity(bits_prec=100):
            raise RuntimeError('Cannot prove hyperbolicity for ' +
                               M.triangulation_isosig())
        kind = 'hyperbolic'
        ids = M.identify()
        if ids:
            name = ids[0].name()
    else:
        match = standard_lookup(regina_tri)
        if match is None:
            Q = P.clone()
            Q.idealToFinite()
            Q.intelligentSimplify()
            match = standard_lookup(Q)
        if match is not None:
            kind = match.__class__.__name__
            name = str(match)
        else:
            name = P.isoSig()
    return kind, name
            
    
    

def is_toroidal(regina_tri):
    """
    Checks for essential tori and returns the pieces of the
    associated partial JSJ decomposition.
    
    >>> T = to_regina('hLALAkbccfefgglpkusufk')  # m004(4,1)
    >>> is_toroidal(T)[0]
    True
    >>> T = to_regina('hvLAQkcdfegfggjwajpmpw')  # m004(0,1)
    >>> is_toroidal(T)[0]
    True
    >>> T = to_regina('nLLLLMLPQkcdgfihjlmmlkmlhshnrvaqtpsfnf')  # 5_2(10,1)
    >>> T.isHaken()
    True
    >>> is_toroidal(T)[0]
    False

    Note: currently checks all fundamental normal tori; possibly
    the theory lets one just check *vertex* normal tori.
    """
    T = regina_tri
    assert T.isZeroEfficient()
    surfaces = regina.NNormalSurfaceList.enumerate(T,
                          regina.NS_QUAD, regina.NS_FUNDAMENTAL)
    for i in range(surfaces.size()):
        S = surfaces.surface(i)
        if S.eulerChar() == 0:
            if not S.isOrientable():
                S = S.doubleSurface()
            assert S.isOrientable()
            X = S.cutAlong()
            X.intelligentSimplify()
            X.splitIntoComponents()
            pieces = list(children(X))
            if all(not C.hasCompressingDisc() for C in pieces):
                ids = [identify_with_torus_boundary(C) for C in pieces]
                return (True, sorted(ids))
                
    return (False, None)


def decompose_along_tori(regina_tri):
    """
    First, finds all essential normal tori in the manifold associated
    with fundamental normal surfaces.  Then takes a maximal disjoint
    collection of these tori, namely the one with the fewest tori
    involved, and cuts the manifold open along it.  It tries to
    identify the pieces, removing any (torus x I) components. 

    Returns: (has essential torus, list of pieces)

    Note: This may fail to be the true JSJ decomposition because there
    could be (torus x I)'s in the list of pieces and it might well be
    possible to amalgamate some of the pieces into a single SFS.
    """
    
    T = regina_tri
    assert T.isZeroEfficient()
    essential_tori = []
    surfaces = regina.NNormalSurfaceList.enumerate(T,
                          regina.NS_QUAD, regina.NS_FUNDAMENTAL)
    for i in range(surfaces.size()):
        S = surfaces.surface(i)
        if S.eulerChar() == 0:
            if not S.isOrientable():
                S = S.doubleSurface()
            assert S.isOrientable()
            X = S.cutAlong()
            X.intelligentSimplify()
            X.splitIntoComponents()
            pieces = list(children(X))
            if all(not C.hasCompressingDisc() for C in pieces):
                essential_tori.append(S)

    if len(essential_tori) == 0:
        return False, None
    
    D = nx.Graph()
    for a, A in enumerate(essential_tori):
        for b, B in enumerate(essential_tori):
            if a < b:
                if A.disjoint(B):
                    D.add_edge(a, b)

    cliques = list(nx.find_cliques(D))
    if len(cliques) == 0:
        clique = [0]
    else:
        clique = min(cliques, key=len)
    clique = [essential_tori[c] for c in clique]
    A = clique[0]
    for B in clique[1:]:
        A = haken_sum(A, B)

    X = A.cutAlong()
    X.intelligentSimplify()
    X.splitIntoComponents()
    ids = [identify_with_torus_boundary(C) for C in list(children(X))]
    # Remove products
    ids = [i for i in ids if i[1] not in ('SFS [A: (1,1)]', 'A x S1')]
    return (True, sorted(ids))

def regina_name(closed_snappy_manifold, trys=100):
    """
    >>> regina_name('m004(1,0)')
    'S3'
    >>> regina_name('s006(-2, 1)')
    'SFS [A: (5,1)] / [ 0,-1 | -1,0 ]'
    >>> regina_name('m010(-1, 1)')
    'L(3,1) # RP3'
    >>> regina_name('m022(-1,1)')
    'SFS [S2: (3,2) (3,2) (4,-3)]'
    >>> regina_name('v0004(0, 1)')
    'SFS [S2: (2,1) (4,1) (15,-13)]'
    >>> regina_name('m305(1, 0)')
    'L(3,1) # RP3'
    """
    M = snappy.Manifold(closed_snappy_manifold)
    isosigs = closed_isosigs(M, trys=trys, max_tets=25)
    if len(isosigs) == 0:
        return
    T = to_regina(isosigs[0])
    if T.isIrreducible():
        if T.countTetrahedra() <= 11:
            for i in range(3):
                T.simplifyExhaustive(i)
                name = census_lookup(T)
                if name is not None:
                    return name
            
        matches = [standard_lookup(to_regina(iso)) for iso in isosigs]
        match = best_match(matches)
        if match is not None:
            return str(match)
    else:
        T.connectedSumDecomposition()
        pieces = [regina_name(P) for P in children(T)]
        if None not in pieces:
            return ' # '.join(sorted(pieces))

if __name__ == '__main__':
    import doctest
    print(doctest.testmod())
<>:84: DeprecationWarning: invalid escape sequence \d
<>:84: DeprecationWarning: invalid escape sequence \d
<ipython-input-24-4bef5675ef00>:84: DeprecationWarning: invalid escape sequence \d
  match = re.search('(.*) : #\d+$', name)
/usr/lib/python3.8/inspect.py:520: DeprecationWarning: 
Importing absolute_igusa_invariants_kohel from here is deprecated. If you need to use it, please import it directly from sage.schemes.hyperelliptic_curves.invariants
See https://trac.sagemath.org/28064 for details.
  while _is_wrapper(func):
/usr/lib/python3.8/inspect.py:520: DeprecationWarning: 
Importing absolute_igusa_invariants_wamelen from here is deprecated. If you need to use it, please import it directly from sage.schemes.hyperelliptic_curves.invariants
See https://trac.sagemath.org/28064 for details.
  while _is_wrapper(func):
/usr/lib/python3.8/inspect.py:520: DeprecationWarning: this is being removed from the global namespace
See https://trac.sagemath.org/25785 for details.
  while _is_wrapper(func):
/usr/lib/python3.8/inspect.py:520: DeprecationWarning: 
Importing all_max_clique from here is deprecated. If you need to use it, please import it directly from sage.graphs.cliquer
See https://trac.sagemath.org/26200 for details.
  while _is_wrapper(func):
/usr/lib/python3.8/inspect.py:520: DeprecationWarning: 
Importing backtrack_all from here is deprecated. If you need to use it, please import it directly from sage.games.sudoku_backtrack
See https://trac.sagemath.org/27066 for details.
  while _is_wrapper(func):
/usr/lib/python3.8/inspect.py:520: DeprecationWarning: 
Importing berlekamp_massey from here is deprecated. If you need to use it, please import it directly from sage.matrix.berlekamp_massey
See https://trac.sagemath.org/27066 for details.
  while _is_wrapper(func):
/usr/lib/python3.8/inspect.py:520: DeprecationWarning: this is being removed from the global namespace
See https://trac.sagemath.org/25785 for details.
  while _is_wrapper(func):
/usr/lib/python3.8/inspect.py:520: DeprecationWarning: 
Importing buzzard_tpslopes from here is deprecated. If you need to use it, please import it directly from sage.modular.buzzard
See https://trac.sagemath.org/27066 for details.
  while _is_wrapper(func):
/usr/lib/python3.8/inspect.py:520: DeprecationWarning: 
Importing clebsch_invariants from here is deprecated. If you need to use it, please import it directly from sage.schemes.hyperelliptic_curves.invariants
See https://trac.sagemath.org/28064 for details.
  while _is_wrapper(func):
/usr/lib/python3.8/inspect.py:520: DeprecationWarning: 
Importing clique_number from here is deprecated. If you need to use it, please import it directly from sage.graphs.cliquer
See https://trac.sagemath.org/26200 for details.
  while _is_wrapper(func):
/usr/lib/python3.8/inspect.py:520: DeprecationWarning: 
Importing convergents from here is deprecated. If you need to use it, please import it directly from sage.rings.continued_fraction
See https://trac.sagemath.org/27066 for details.
  while _is_wrapper(func):
/usr/lib/python3.8/inspect.py:511: DeprecationWarning: sage.interacts.debugger is deprecated because it is meant for the deprecated Sage Notebook
See https://trac.sagemath.org/27531 for details.
  return hasattr(f, '__wrapped__')
/usr/lib/python3.8/inspect.py:520: DeprecationWarning: 
Importing designs_from_XML from here is deprecated. If you need to use it, please import it directly from sage.combinat.designs.ext_rep
See https://trac.sagemath.org/27066 for details.
  while _is_wrapper(func):
/usr/lib/python3.8/inspect.py:520: DeprecationWarning: 
Importing designs_from_XML_url from here is deprecated. If you need to use it, please import it directly from sage.combinat.designs.ext_rep
See https://trac.sagemath.org/27066 for details.
  while _is_wrapper(func):
---------------------------------------------------------------------------
ModuleNotFoundError                       Traceback (most recent call last)
<ipython-input-24-4bef5675ef00> in <module>
    350 if __name__ == '__main__':
    351     import doctest
--> 352     print(doctest.testmod())

/usr/lib/python3.8/doctest.py in testmod(m, name, globs, verbose, report, optionflags, extraglobs, raise_on_error, exclude_empty)
   1953         runner = DocTestRunner(verbose=verbose, optionflags=optionflags)
   1954 
-> 1955     for test in finder.find(m, name, globs=globs, extraglobs=extraglobs):
   1956         runner.run(test)
   1957 

/usr/lib/python3.8/doctest.py in find(self, obj, name, module, globs, extraglobs)
    937         # Recursively explore `obj`, extracting DocTests.
    938         tests = []
--> 939         self._find(tests, obj, name, module, source_lines, globs, {})
    940         # Sort the tests by alpha order of names, for consistency in
    941         # verbose-mode output.  This was a feature of doctest in Pythons

/usr/lib/python3.8/doctest.py in _find(self, tests, obj, name, module, source_lines, globs, seen)
    996                 valname = '%s.%s' % (name, valname)
    997                 # Recurse to functions & classes.
--> 998                 if ((inspect.isroutine(inspect.unwrap(val))
    999                      or inspect.isclass(val)) and
   1000                     self._from_module(module, val)):

/usr/lib/python3.8/inspect.py in unwrap(func, stop)
    518     memo = {id(f): f}
    519     recursion_limit = sys.getrecursionlimit()
--> 520     while _is_wrapper(func):
    521         func = func.__wrapped__
    522         id_func = id(func)

/usr/lib/python3.8/inspect.py in _is_wrapper(f)
    509     if stop is None:
    510         def _is_wrapper(f):
--> 511             return hasattr(f, '__wrapped__')
    512     else:
    513         def _is_wrapper(f):

/usr/lib/python3/dist-packages/sage/misc/lazy_import.pyx in sage.misc.lazy_import.LazyImport.__getattr__ (build/cythonized/sage/misc/lazy_import.c:3536)()
    319             True
    320         """
--> 321         return getattr(self.get_object(), attr)
    322 
    323     # We need to wrap all the slot methods, as they are not forwarded

/usr/lib/python3/dist-packages/sage/misc/lazy_import.pyx in sage.misc.lazy_import.LazyImport.get_object (build/cythonized/sage/misc/lazy_import.c:2347)()
    186         if likely(self._object is not None):
    187             return self._object
--> 188         return self._get_object()
    189 
    190     cpdef _get_object(self):

/usr/lib/python3/dist-packages/sage/misc/lazy_import.pyx in sage.misc.lazy_import.LazyImport._get_object (build/cythonized/sage/misc/lazy_import.c:2586)()
    218         elif self._at_startup and not startup_guard:
    219             print('Option ``at_startup=True`` for lazy import {0} not needed anymore'.format(self._name))
--> 220         self._object = getattr(__import__(self._module, {}, {}, [self._name]), self._name)
    221         name = self._as_name
    222         if self._deprecation is not None:

ModuleNotFoundError: No module named 'sagenb'

Dunfield's code works for manifolds with one cusp and thus we need the following function that fills all but one cusp permanently.

In [25]:
def fill_triangulation(M):
    '''
    Fills all cusps but one.
    '''
    if M.num_cusps()==1:
        return M
    M=M.filled_triangulation([0])
    M=fill_triangulation(M)
    return M
In [26]:
start_time = time.time()
ALTERNATING_NON_HYPERBOLIC=[]
STILL_UNCLEAR=[]
for (knot,slope) in UNCLEAR_NON_HYPERBOLIC_SLOPES:
    K=snappy.Manifold(knot)
    K.dehn_fill(slope)
    K_reg=regina_name(K)
    DBC=possible_DBC([K.homology().order()],max_crossings=13)
    has_alter=False
    for D in DBC:
        DF=fill_triangulation(D[0])
        if regina_name(DF)==K_reg:
            ALTERNATING_NON_HYPERBOLIC.append([knot,slope,K_reg,D[1]])
            has_alter=True
            break
    if has_alter==False:
        STILL_UNCLEAR.append([knot,slope])
        
print("--- Time taken: %s hours ---" % ((time.time() - start_time)/3600))
--- Time taken: 2.0233842552370493 hours ---
In [27]:
len(ALTERNATING_NON_HYPERBOLIC)
Out[27]:
184
In [28]:
len(STILL_UNCLEAR)
Out[28]:
0
In [29]:
ALTERNATING_NON_HYPERBOLIC.sort()
In [30]:
for knot in GOERITZ:
    if len(knot[2])!=2:
        print(knot)
['o9_32132', [7, 5, 3], [[85, [[2, -1, -1, 0], [-1, 4, -1, -1], [-1, -1, 6, -2], [0, -1, -2, 4]]]]]
['o9_32588', [5, 5, 4, 3, 2, 2], [[84, [[2, 0, 0, -1, 0, 0], [0, 2, 0, 0, 0, -1], [0, 0, 3, -1, -1, -1], [-1, 0, -1, 3, 0, -1], [0, 0, -1, 0, 3, 0], [0, -1, -1, -1, 0, 3]]]]]
['o9_37754', [6, 6, 4, 3, 2], [[102, [[2, 0, 0, 0, -1], [0, 3, 0, -1, -1], [0, 0, 3, -1, -1], [0, -1, -1, 4, 0], [-1, -1, -1, 0, 3]]]]]
['o9_39451', [7, 6, 3, 2, 2], [[103, [[2, 0, -1, 0, 0], [0, 3, -1, -1, -1], [-1, -1, 3, -1, 0], [0, -1, -1, 4, -1], [0, -1, 0, -1, 4]]]]]
['o9_40179', [8, 7, 3, 2, 2], [[131, [[2, -1, 0, -1, 0], [-1, 4, 0, 0, -2], [0, 0, 4, 0, -3], [-1, 0, 0, 3, -1], [0, -2, -3, -1, 6]]]]]
['o9_43001', [8, 5, 4, 2, 2], [[114, [[2, 0, -1, 0, 0], [0, 4, -1, -1, -1], [-1, -1, 4, 0, -1], [0, -1, 0, 3, -1], [0, -1, -1, -1, 3]]]]]
['o9_43679', [7, 7, 5, 3, 3], [[143, [[2, 0, 0, 0, -1, -1], [0, 2, 0, -1, 0, -1], [0, 0, 2, 0, 0, -1], [0, -1, 0, 4, -1, -1], [-1, 0, 0, -1, 4, 0], [-1, -1, -1, -1, 0, 4]]]]]
['o9_43953', [9, 4, 3, 3], [[117, [[2, 0, -1, 0, -1], [0, 2, 0, 0, -1], [-1, 0, 5, -2, 0], [0, 0, -2, 5, -1], [-1, -1, 0, -1, 3]]]]]
['o9_44054', [9, 5, 3, 3], [[126, [[2, 0, 0, -1, 0], [0, 2, 0, 0, -1], [0, 0, 6, -2, -2], [-1, 0, -2, 4, -1], [0, -1, -2, -1, 4]]]]]
['t10188', [5, 4, 3, 2, 2], [[59, [[2, -1, 0, -1, 0], [-1, 4, 0, 0, -2], [0, 0, 3, -1, -1], [-1, 0, -1, 3, 0], [0, -2, -1, 0, 3]]]]]
['t11556', [6, 4, 3, 2], [[66, [[5, -1, -1, -2], [-1, 3, 0, -1], [-1, 0, 3, -1], [-2, -1, -1, 4]]]]]
['t12753', [7, 5, 3, 3], [[94, [[2, 0, -1, -1, 0], [0, 2, -1, 0, -1], [-1, -1, 4, 0, -1], [-1, 0, 0, 4, -1], [0, -1, -1, -1, 4]]]]]
In [31]:
ALTERNATING_NON_HYPERBOLIC
Out[31]:
[['m239',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (3,1)], m = [ -1,1 | 0,1 ]',
  'K8a15'],
 ['o9_01584',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (7,3)], m = [ 0,-1 | 1,2 ]',
  'L13a339'],
 ['o9_01621',
  (1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (7,4)], m = [ 0,-1 | 1,2 ]',
  'L13a337'],
 ['o9_02655',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (17,5)], m = [ -1,1 | 0,1 ]',
  'K12a527'],
 ['o9_02696',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (18,5)], m = [ -1,1 | 0,1 ]',
  'L12a920'],
 ['o9_02786',
  (-2, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (6,1)], m = [ -1,1 | 0,1 ]',
  'K12a1095'],
 ['o9_03133',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (4,1)], m = [ 0,-1 | 1,2 ]',
  'L13a1959'],
 ['o9_03313',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (5,2)], m = [ 0,-1 | 1,2 ]',
  'K13a587'],
 ['o9_03802',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (4,1)], m = [ 2,1 | -1,0 ]',
  'L13a1665'],
 ['o9_04106',
  (1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,1)], m = [ -1,-1 | 4,3 ]',
  'L13a380'],
 ['o9_04205',
  (1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,2)], m = [ -1,-1 | 4,3 ]',
  'L13a365'],
 ['o9_04245',
  (-1, 1),
  'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (4,3)], m = [ 0,-1 | 1,2 ]',
  'L13a1869'],
 ['o9_04269',
  (-2, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (4,1) (5,4)], m = [ -1,1 | 0,1 ]',
  'K12a1011'],
 ['o9_04438',
  (-1, 1),
  'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (5,3)], m = [ 0,-1 | 1,2 ]',
  'K13a60'],
 ['o9_05021',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (7,3)], m = [ 2,1 | -1,0 ]',
  'L13a765'],
 ['o9_05177',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (7,4)], m = [ 2,1 | -1,0 ]',
  'L13a763'],
 ['o9_05229',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,1)], m = [ -3,-1 | 4,1 ]',
  'L13a841'],
 ['o9_05357',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (5,2)], m = [ 2,1 | -1,0 ]',
  'K13a427'],
 ['o9_05562',
  (-1, 1),
  'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (4,3)], m = [ 2,1 | -1,0 ]',
  'L13a1595'],
 ['o9_05618',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,2)], m = [ -3,-1 | 4,1 ]',
  'L13a790'],
 ['o9_05970',
  (-1, 1),
  'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (5,3)], m = [ 2,1 | -1,0 ]',
  'K13a18'],
 ['o9_06060',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (5,2) (7,2)], m = [ -1,1 | 0,1 ]',
  'K12a318'],
 ['o9_06154',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (5,3) (7,2)], m = [ -1,1 | 0,1 ]',
  'L12a835'],
 ['o9_07893', (-1, 1), 'SFS [RP2/n2: (2,1) (25,-18)]', 'L12a29'],
 ['o9_07945', (-1, 1), 'SFS [RP2/n2: (2,1) (29,-21)]', 'L12a26'],
 ['o9_08647',
  (1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,2) (7,4)], m = [ 0,-1 | 1,1 ]',
  'L13a947'],
 ['o9_08771',
  (1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,2) (8,5)], m = [ 0,-1 | 1,1 ]',
  'L13a574'],
 ['o9_08828',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (10,7)], m = [ 0,-1 | 1,0 ]',
  'L13a2834'],
 ['o9_08875',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (11,8)], m = [ 0,-1 | 1,0 ]',
  'K13a803'],
 ['o9_09213',
  (1, 1),
  'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (5,1)], m = [ 1,1 | -1,0 ]',
  'K13a176'],
 ['o9_11999',
  (1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (4,3) (5,2)], m = [ 0,-1 | 1,1 ]',
  'L13a572'],
 ['o9_12459',
  (-1, 1),
  'SFS [D: (2,1) (5,1)] U/m SFS [D: (2,1) (7,5)], m = [ -1,1 | 0,1 ]',
  'K12a440'],
 ['o9_12519',
  (-1, 1),
  'SFS [D: (2,1) (5,1)] U/m SFS [D: (2,1) (7,2)], m = [ -1,1 | 0,1 ]',
  'K12a365'],
 ['o9_12757',
  (-1, 1),
  'SFS [D: (2,1) (3,2)] U/m SFS [D: (3,1) (5,1)], m = [ 0,-1 | 1,0 ]',
  'L13a4367'],
 ['o9_12873',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (5,3)], m = [ 0,-1 | 1,1 ]',
  'L13a3024'],
 ['o9_12971',
  (-1, 1),
  'SFS [D: (2,1) (4,1)] U/m SFS [D: (4,1) (5,3)], m = [ -1,1 | 0,1 ]',
  'L12a558'],
 ['o9_13052',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (9,2)], m = [ 0,-1 | 1,0 ]',
  'K13a1413'],
 ['o9_13125',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (14,11)], m = [ -1,1 | 0,1 ]',
  'L12a841'],
 ['o9_13188',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (4,1) (7,2)], m = [ 0,-1 | 1,0 ]',
  'L13a674'],
 ['o9_13433',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (18,5)], m = [ -1,1 | 0,1 ]',
  'L12a920'],
 ['o9_13639',
  (1, 1),
  'SFS [D: (2,1) (4,1)] U/m SFS [D: (3,2) (7,4)], m = [ -1,1 | 0,1 ]',
  'L12a689'],
 ['o9_13666',
  (1, 1),
  'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (7,3)], m = [ 0,-1 | 1,0 ]',
  'L13a1663'],
 ['o9_13720',
  (1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (11,3)], m = [ 0,-1 | 1,1 ]',
  'L13a318'],
 ['o9_13952',
  (1, 1),
  'SFS [D: (2,1) (7,5)] U/m SFS [D: (3,1) (3,1)], m = [ 0,-1 | 1,0 ]',
  'L13a3554'],
 ['o9_14364',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (5,4)], m = [ 1,1 | 0,-1 ]',
  'L12a62'],
 ['o9_14376',
  (1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,2) (11,3)], m = [ 0,-1 | 1,0 ]',
  'L13a1116'],
 ['o9_14495',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,2)], m = [ -1,-1 | 2,3 ]',
  'L12a66'],
 ['o9_14716',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (4,3)], m = [ 0,-1 | 1,1 ]',
  'K13a3243'],
 ['o9_14831', (0, 1), 'SFS [RP2/n2: (4,1) (5,-1)]', 'L11a51'],
 ['o9_14974',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (5,4)], m = [ 1,1 | -1,0 ]',
  'K13a1545'],
 ['o9_15506',
  (1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,2)], m = [ -2,-1 | 3,2 ]',
  'L12a176'],
 ['o9_15633',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (18,13)], m = [ -1,1 | 0,1 ]',
  'L12a921'],
 ['o9_15997',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,2) (4,3)], m = [ -1,-1 | 2,1 ]',
  'L13a707'],
 ['o9_16065',
  (-1, 1),
  'SFS [D: (2,1) (3,2)] U/m SFS [D: (3,2) (5,3)], m = [ 0,-1 | 1,1 ]',
  'L13a2968'],
 ['o9_16141',
  (-1, 1),
  'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (7,5)], m = [ 0,-1 | 1,1 ]',
  'K13a148'],
 ['o9_16157',
  (-1, 1),
  'SFS [D: (2,1) (4,3)] U/m SFS [D: (3,2) (3,2)], m = [ 0,-1 | 1,1 ]',
  'L13a1842'],
 ['o9_16181',
  (1, 1),
  'SFS [D: (2,1) (7,5)] U/m SFS [D: (3,1) (3,2)], m = [ 0,-1 | 1,0 ]',
  'K13a811'],
 ['o9_16319',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (3,2)], m = [ -1,-1 | 2,1 ]',
  'K13a719'],
 ['o9_16356',
  (1, 1),
  'SFS [D: (2,1) (4,3)] U/m SFS [D: (3,1) (3,1)], m = [ 0,-1 | 1,1 ]',
  'L13a2089'],
 ['o9_16527',
  (1, 1),
  'SFS [D: (2,1) (4,3)] U/m SFS [D: (3,1) (4,3)], m = [ 0,-1 | 1,0 ]',
  'L13a1858'],
 ['o9_16642',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (7,5)], m = [ -1,-1 | 2,1 ]',
  'L13a354'],
 ['o9_16748',
  (-1, 1),
  'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (11,8)], m = [ -1,1 | 0,1 ]',
  'L12a473'],
 ['o9_16920', (0, 1), 'SFS [RP2/n2: (4,1) (7,-2)]', 'L11a54'],
 ['o9_18007',
  (-1, 1),
  'SFS [D: (2,1) (9,2)] U/m SFS [D: (3,1) (3,2)], m = [ -1,1 | 0,1 ]',
  'L12a536'],
 ['o9_18209',
  (1, 1),
  'SFS [D: (2,1) (5,2)] U/m SFS [D: (3,1) (4,1)], m = [ 0,-1 | 1,0 ]',
  'K13a575'],
 ['o9_18633',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,2) (4,3)], m = [ 1,1 | 0,-1 ]',
  'L12a184'],
 ['o9_18813',
  (1, 1),
  'SFS [D: (2,1) (8,3)] U/m SFS [D: (3,1) (3,1)], m = [ -1,1 | 0,1 ]',
  'L11a198'],
 ['o9_19130', (1, 1), 'SFS [RP2/n2: (3,1) (10,-7)]', 'L11a102'],
 ['o9_20219',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (15,11)], m = [ -1,1 | 0,1 ]',
  'K12a849'],
 ['o9_21893',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (5,4)], m = [ -1,1 | 0,1 ]',
  'L11a282'],
 ['o9_21918',
  (-1, 1),
  'SFS [D: (2,1) (4,1)] U/m SFS [D: (3,1) (4,3)], m = [ -1,1 | 0,1 ]',
  'L11a173'],
 ['o9_22129',
  (-1, 1),
  'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (5,1)], m = [ 0,-1 | 1,0 ]',
  'L13a1662'],
 ['o9_22477',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (4,1) (4,3)], m = [ -1,1 | 0,1 ]',
  'L11a255'],
 ['o9_22663', (0, 1), 'SFS [RP2/n2: (5,2) (7,-5)]', 'L11a104'],
 ['o9_22698',
  (1, 1),
  'SFS [D: (2,1) (7,2)] U/m SFS [D: (2,1) (7,2)], m = [ -1,1 | 0,1 ]',
  'K12a353'],
 ['o9_22925',
  (-1, 1),
  'SFS [D: (3,1) (3,1)] U/m SFS [D: (3,1) (5,2)], m = [ -1,1 | 0,1 ]',
  'K11a232'],
 ['o9_23023',
  (1, 1),
  'SFS [D: (2,1) (7,2)] U/m SFS [D: (2,1) (8,3)], m = [ -1,1 | 0,1 ]',
  'L12a456'],
 ['o9_23263',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (3,1)], m = [ 0,-1 | 1,2 ]',
  'L13a4177'],
 ['o9_23660',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (3,2)], m = [ 0,-1 | 1,2 ]',
  'K13a1744'],
 ['o9_23955',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (4,1)], m = [ 0,-1 | 1,1 ]',
  'K13a3269'],
 ['o9_23961',
  (0, 1),
  'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (7,2)], m = [ 0,-1 | 1,0 ]',
  'L13a1655'],
 ['o9_24149',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (4,1) (4,3)], m = [ 0,-1 | 1,0 ]',
  'L13a3083'],
 ['o9_24183',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (8,5)], m = [ 0,-1 | 1,0 ]',
  'K13a888'],
 ['o9_24534',
  (-1, 1),
  'SFS [D: (2,1) (5,1)] U/m SFS [D: (3,1) (3,1)], m = [ 0,-1 | 1,0 ]',
  'L13a3661'],
 ['o9_24592',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (4,1) (4,3)], m = [ -1,1 | 0,1 ]',
  'L11a255'],
 ['o9_24886',
  (0, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (13,5)], m = [ 1,1 | -1,0 ]',
  'L13a353'],
 ['o9_24889',
  (1, 1),
  'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (10,3)], m = [ 0,-1 | 1,0 ]',
  'L13a2793'],
 ['o9_25595',
  (-1, 1),
  'SFS [D: (2,1) (4,1)] U/m SFS [D: (3,1) (4,1)], m = [ 0,-1 | 1,0 ]',
  'L13a1946'],
 ['o9_26604',
  (0, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (12,5)], m = [ -1,1 | 0,1 ]',
  'L11a182'],
 ['o9_26604',
  (1, 1),
  'SFS [D: (2,1) (5,2)] U/m SFS [D: (2,1) (7,5)], m = [ -1,1 | 0,1 ]',
  'K11a27'],
 ['o9_27392',
  (-1, 1),
  'SFS [D: (2,1) (5,2)] U/m SFS [D: (3,1) (3,1)], m = [ 1,1 | -1,0 ]',
  'L13a3545'],
 ['o9_27480',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (3,1)], m = [ 2,1 | -1,0 ]',
  'L13a3645'],
 ['o9_27737',
  (0, 1),
  'SFS [D: (2,1) (4,1)] U/m SFS [D: (3,2) (4,1)], m = [ 0,-1 | 1,0 ]',
  'L13a1963'],
 ['o9_28113',
  (0, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (4,1) (5,2)], m = [ 1,1 | -1,0 ]',
  'L13a803'],
 ['o9_28529',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (5,2)], m = [ 0,-1 | 1,1 ]',
  'K13a780'],
 ['o9_28592',
  (0, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (7,2)], m = [ 1,1 | -1,0 ]',
  'K13a1156'],
 ['o9_29246',
  (-1, 1),
  'SFS [D: (3,1) (3,1)] U/m SFS [D: (3,2) (5,3)], m = [ 0,-1 | 1,0 ]',
  'K13a1903'],
 ['o9_29436',
  (0, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (8,3)], m = [ 1,1 | -1,0 ]',
  'L13a1612'],
 ['o9_29529', (0, 1), 'SFS [RP2/n2: (2,1) (19,-11)]', 'L11a3'],
 ['o9_29529',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (13,5)], m = [ -1,1 | 0,1 ]',
  'K11a72'],
 ['o9_30721',
  (0, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,2) (5,3)], m = [ 0,-1 | 1,0 ]',
  'L11a69'],
 ['o9_30721',
  (1, 1),
  'SFS [D: (3,1) (3,2)] U/m SFS [D: (3,1) (5,2)], m = [ -1,1 | 0,1 ]',
  'K11a157'],
 ['o9_30790',
  (0, 1),
  'SFS [D: (2,1) (5,3)] U/m SFS [D: (2,1) (7,2)], m = [ 0,-1 | 1,0 ]',
  'K13a9'],
 ['o9_31165',
  (0, 1),
  'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (5,2)], m = [ 1,1 | -1,0 ]',
  'L13a1668'],
 ['o9_31165',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (3,2)], m = [ 2,1 | -1,0 ]',
  'K13a912'],
 ['o9_33526',
  (0, 1),
  'SFS [D: (2,1) (5,2)] U/m SFS [D: (3,1) (3,2)], m = [ -1,1 | 0,1 ]',
  'L10a69'],
 ['o9_33585',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (4,3) (5,2)], m = [ -1,1 | 0,1 ]',
  'K11a130'],
 ['o9_33585',
  (0, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (5,3)], m = [ 0,-1 | 1,1 ]',
  'L11a30'],
 ['o9_34403', (0, 1), 'SFS [RP2/n2: (4,1) (7,-4)]', 'L11a50'],
 ['o9_35320',
  (-1, 1),
  'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (7,5)], m = [ -1,1 | 0,1 ]',
  'L11a149'],
 ['o9_35549',
  (0, 1),
  'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (5,2)], m = [ -1,-1 | 2,1 ]',
  'K13a164'],
 ['o9_35549',
  (1, 1),
  'SFS [D: (3,1) (3,2)] U/m SFS [D: (3,2) (5,3)], m = [ 0,-1 | 1,0 ]',
  'L13a4597'],
 ['o9_35736',
  (0, 1),
  'SFS [D: (2,1) (3,2)] U/m SFS [D: (3,2) (5,2)], m = [ 1,1 | -1,0 ]',
  'L13a2540'],
 ['o9_35736',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (5,3)], m = [ 1,1 | -1,0 ]',
  'K13a914'],
 ['o9_37941', (0, 1), 'SFS [RP2/n2: (3,1) (10,-7)]', 'L11a102'],
 ['o9_39394',
  (0, 1),
  'SFS [D: (2,1) (3,2)] U/m SFS [D: (3,2) (3,2)], m = [ 0,-1 | 1,0 ]',
  'L11a220'],
 ['o9_40179',
  (0, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (7,4)], m = [ -1,1 | 0,1 ]',
  'K11a298'],
 ['s294',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (4,1)], m = [ -1,1 | 0,1 ]',
  'L9a22'],
 ['s336',
  (-2, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (3,1)], m = [ -1,1 | 0,1 ]',
  'K9a31'],
 ['s665',
  (1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,2)], m = [ 0,-1 | 1,1 ]',
  'L10a13'],
 ['s684', (1, 1), 'SFS [RP2/n2: (2,1) (7,-5)]', 'L9a3'],
 ['s800',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (3,2)], m = [ 0,-1 | 1,0 ]',
  'K10a8'],
 ['t00826',
  (1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (5,2)], m = [ 0,-1 | 1,2 ]',
  'L12a100'],
 ['t00855',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (5,3)], m = [ 0,-1 | 1,2 ]',
  'L12a97'],
 ['t01318',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (10,3)], m = [ -1,1 | 0,1 ]',
  'L11a257'],
 ['t01368',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (11,3)], m = [ -1,1 | 0,1 ]',
  'K11a81'],
 ['t01422',
  (-2, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (5,1)], m = [ -1,1 | 0,1 ]',
  'K11a323'],
 ['t02099',
  (-2, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (4,1) (4,3)], m = [ -1,1 | 0,1 ]',
  'L11a255'],
 ['t02104',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (7,2)], m = [ -1,1 | 0,1 ]',
  'L11a234'],
 ['t02238',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (5,2)], m = [ 2,1 | -1,0 ]',
  'L12a240'],
 ['t02398',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (5,3)], m = [ 2,1 | -1,0 ]',
  'L12a239'],
 ['t02404',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (7,2)], m = [ -1,1 | 0,1 ]',
  'K11a150'],
 ['t03979',
  (-1, 1),
  'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (7,4)], m = [ -1,1 | 0,1 ]',
  'L11a144'],
 ['t04180',
  (-1, 1),
  'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (4,1)], m = [ 1,1 | -1,0 ]',
  'L12a524'],
 ['t04244',
  (1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (7,5)], m = [ 0,-1 | 1,1 ]',
  'L12a93'],
 ['t04382',
  (1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (11,3)], m = [ 0,-1 | 1,0 ]',
  'L12a90'],
 ['t04721',
  (1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,1) (4,3)], m = [ 0,-1 | 1,1 ]',
  'L12a250'],
 ['t05425',
  (1, 1),
  'SFS [D: (2,1) (4,1)] U/m SFS [D: (3,1) (5,3)], m = [ -1,1 | 0,1 ]',
  'L11a212'],
 ['t05538',
  (-1, 1),
  'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (7,2)], m = [ -1,1 | 0,1 ]',
  'L11a148'],
 ['t05564',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,1) (7,2)], m = [ 0,-1 | 1,0 ]',
  'L12a202'],
 ['t05658',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (9,7)], m = [ -1,1 | 0,1 ]',
  'K11a167'],
 ['t05695',
  (-1, 1),
  'SFS [D: (2,1) (3,2)] U/m SFS [D: (3,1) (4,1)], m = [ 0,-1 | 1,0 ]',
  'K12a93'],
 ['t06001',
  (-1, 1),
  'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (5,2)], m = [ 0,-1 | 1,0 ]',
  'L12a523'],
 ['t06440',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (4,3)], m = [ 1,1 | -1,0 ]',
  'L12a497'],
 ['t06463',
  (1, 1),
  'SFS [D: (2,1) (3,2)] U/m SFS [D: (3,2) (3,2)], m = [ 0,-1 | 1,1 ]',
  'K12a79'],
 ['t06525',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (11,8)], m = [ -1,1 | 0,1 ]',
  'K11a80'],
 ['t06570',
  (-1, 1),
  'SFS [D: (2,1) (4,3)] U/m SFS [D: (3,1) (3,2)], m = [ 0,-1 | 1,0 ]',
  'L12a602'],
 ['t06605',
  (1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,2) (3,2)], m = [ -1,-1 | 2,1 ]',
  'L12a342'],
 ['t07348',
  (-1, 1),
  'SFS [D: (2,1) (5,2)] U/m SFS [D: (3,1) (3,1)], m = [ -1,1 | 0,1 ]',
  'K10a12'],
 ['t08111',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (4,3)], m = [ -1,1 | 0,1 ]',
  'K10a106'],
 ['t08201',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (5,2)], m = [ -1,1 | 0,1 ]',
  'L10a84'],
 ['t08267',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (11,8)], m = [ -1,1 | 0,1 ]',
  'K11a80'],
 ['t08403',
  (-1, 1),
  'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (7,2)], m = [ -1,1 | 0,1 ]',
  'L11a148'],
 ['t09016',
  (-1, 1),
  'SFS [D: (2,1) (5,2)] U/m SFS [D: (2,1) (7,2)], m = [ -1,1 | 0,1 ]',
  'K11a52'],
 ['t09267',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (4,1)], m = [ 0,-1 | 1,1 ]',
  'L12a529'],
 ['t09313',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (5,2)], m = [ 0,-1 | 1,1 ]',
  'K12a129'],
 ['t09455',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (4,1)], m = [ 0,-1 | 1,0 ]',
  'K12a355'],
 ['t09704',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (5,3)], m = [ 0,-1 | 1,0 ]',
  'K12a271'],
 ['t09852',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (4,3)], m = [ -1,1 | 0,1 ]',
  'K10a106'],
 ['t09954',
  (-1, 1),
  'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (5,3)], m = [ -1,1 | 0,1 ]',
  'L10a55'],
 ['t09954',
  (0, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (7,3)], m = [ -1,1 | 0,1 ]',
  'K10a87'],
 ['t10188',
  (0, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (5,2)], m = [ -1,1 | 0,1 ]',
  'K9a6'],
 ['t10643',
  (0, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,1) (5,2)], m = [ 1,1 | -1,0 ]',
  'L12a363'],
 ['t10681',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (5,3)], m = [ 0,-1 | 1,0 ]',
  'K12a271'],
 ['t10985',
  (0, 1),
  'SFS [D: (2,1) (3,2)] U/m SFS [D: (2,1) (5,2)], m = [ 1,1 | -1,0 ]',
  'K12a57'],
 ['t11852', (0, 1), 'SFS [RP2/n2: (3,1) (7,-4)]', 'L10a49'],
 ['t12753',
  (0, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (5,3)], m = [ -1,1 | 0,1 ]',
  'L10a85'],
 ['v0407',
  (1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,1)], m = [ 0,-1 | 1,2 ]',
  'L11a36'],
 ['v0434',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,2)], m = [ 0,-1 | 1,2 ]',
  'L11a35'],
 ['v0707',
  (-2, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,1) (4,1)], m = [ -1,1 | 0,1 ]',
  'K10a101'],
 ['v0759',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,1)], m = [ 2,1 | -1,0 ]',
  'L11a85'],
 ['v0939',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (3,2) (4,1)], m = [ -1,1 | 0,1 ]',
  'K10a91'],
 ['v0945',
  (1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (3,2)], m = [ 2,1 | -1,0 ]',
  'L11a84'],
 ['v1709', (-1, 1), 'SFS [RP2/n2: (2,1) (11,-8)]', 'L10a4'],
 ['v1810',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (3,2)], m = [ 0,-1 | 1,1 ]',
  'K11a22'],
 ['v1832',
  (1, 1),
  'SFS [D: (2,1) (4,1)] U/m SFS [D: (2,1) (5,3)], m = [ -1,1 | 0,1 ]',
  'L10a55'],
 ['v1839',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (3,2) (3,2)], m = [ 0,-1 | 1,1 ]',
  'L11a57'],
 ['v1921',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (4,3)], m = [ 0,-1 | 1,0 ]',
  'L11a153'],
 ['v1980', (-1, 1), 'SFS [RP2/n2: (3,1) (4,-1)]', 'L9a9'],
 ['v1986',
  (-1, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (7,2)], m = [ 0,-1 | 1,0 ]',
  'L11a26'],
 ['v2215',
  (1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (7,2)], m = [ -1,1 | 0,1 ]',
  'K10a39'],
 ['v2325',
  (-1, 1),
  'SFS [D: (2,1) (3,2)] U/m SFS [D: (3,1) (3,1)], m = [ 0,-1 | 1,0 ]',
  'L11a315'],
 ['v2930',
  (-1, 1),
  'SFS [D: (2,1) (3,1)] U/m SFS [D: (2,1) (4,1)], m = [ 0,-1 | 1,0 ]',
  'L11a164'],
 ['v3354',
  (0, 1),
  'SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (5,2)], m = [ 1,1 | -1,0 ]',
  'L11a39']]